Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:487–510.
Article
Google Scholar
Lew KS, Othman R, Ishikawa K, Yeoh FY. Macroporous bioceramics: a remarkable material for bone regeneration. J Biomater Appl. 2011;27:345–58.
Article
PubMed
Google Scholar
Best SM, Porter AE, Thian ES, Huang J. Bioceramics: past, present and for the future. J Eur Ceram Soc. 2008;28:1319–27.
Article
Google Scholar
Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biogeosciences. 2000;21:1291–8.
Google Scholar
Ebaretonbofa E, Evans JRG. High porosity hydroxyapatite foam scaffolds for bone substitute. J Porous Mater. 2002;9:257–63.
Article
Google Scholar
Kühne JH, Bartl R, Frisch B, Hammer C, Jansson V, Zimmer M. Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits. Acta Orthop Scand. 1994;65:246–52.
Article
PubMed
Google Scholar
Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 2011;7:3813–28.
Article
PubMed
Google Scholar
Fu Q, Rahaman NR, Dogan F, Bal BS. Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. J Biomed Mater Res Part B: Appl Biomater. 2008;86B:514–22.
Article
Google Scholar
Fu Q, Rahaman NR, Dogan F, Bal BS. Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. J Biomed Mater Res Part B: Appl Biomater. 2008;86B:125–35.
Article
Google Scholar
Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biogeosciences. 2006;27:5480–9.
Google Scholar
Sopyan I, Kaur J. Preparation and characterization of porous hydroxyapatite through polymeric sponge method. Ceram Int. 2009;35:3161–8.
Article
Google Scholar
Munar ML, Udoh K, Ishikawa K, Matsuya S, Nakagawa M. Effects of sintering temperature over 1300 °C on the physical and compositional properties of porous hydroxyapatite foam. Dent Mater J. 2006;25:51–8.
Article
PubMed
Google Scholar
Ramay HR, Zhang M. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biogeosciences. 2003;24:3293–302.
Google Scholar
Bakhtiari L, Rezaie HR, Hosseinalipour SM, Shokrgozar MA. Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering. Ceram Int. 2010;36:2421–6.
Article
Google Scholar
Akkouch A, Zhang Z, Rouabhia M. A novel collagen/hydroxyapatite/poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D scaffold for bone regeneration. J Biomed Mater Res Part A. 2011;96A:693–704.
Article
Google Scholar
Shigemitsu Y, Sugiyama N, Oribe K, Rikukawa M, Aizawa M. Fabrication of biodegradable β-tricalcium phosphate/poly(L-lactic acid) hybrids and their in vitro biocompatibility. J Ceram Soc Japan. 2010;118:1181–7.
Article
Google Scholar
Miranda P, Saiz E, Gryn K, Tomsia AP. Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater. 2006;2:457–66.
Article
PubMed
Google Scholar
Wu Q, Zhang X, Wu B, Huang W. Fabrication and characterization of porous HA/β-TCP scaffolds strengthened with micro-ribs structure. Mater Lett. 2013;92:274–7.
Article
Google Scholar
Aoki S, Yamaguchi S, Nakahira A, Suganuma K. Preparation of porous calcium phosphates using a ceramic foaming technique combined with a hydrothermal treatment and the cell response with incorporation of osteoblast-like cells. J Ceram Soc Japan. 2004;112:193–9.
Article
Google Scholar
Johnson AJW, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 2011;7:16–30.
Article
Google Scholar
Lee J, Kim IK, Kim TG, Kim YH, Park JC, Kim YJ, et al. Biocompatibility and strengthening of porous hydroxyapatite scaffolds using poly(L-lactic acid) coating. J Porous Mater. 2013;20:719–25.
Article
Google Scholar
Miao X, Tan DT, Li J, Xiao Y, Crawford R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater. 2008;4:638–45.
Article
PubMed
Google Scholar
Bang LT, Tsuru K, Munar M, Ishikawa K, Othman R. Mechanical behavior and cell response of PCL coated α-TCP foam for cancellous-type bone replacement. Ceram Int. 2013;39:5631–7.
Article
Google Scholar
Martínez-Vázquez FJ, Miranda P, Guiberteau F, Pajares A. Reinforcing bioceramic scaffolds with in situ synthesized ε-polycaprolactone coatings. J Biomed Mater Res Part A. 2013;101A:3551–9.
Article
Google Scholar
Zhao J, Lu X, Duan K, Guo LY, Zhou SB, Weng J. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Coll Surf B: Biointerf. 2009;74:159–66.
Article
Google Scholar
Yang K, Zhang J, Ma X, Kan C, Ma H, Li Y, et al. β-tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering. Mater Sci Eng C. 2015;C56:37–47.
Article
Google Scholar
Landi E, Valentini F, Tampieri A. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomater. 2008;4:1620–6.
Article
PubMed
Google Scholar
Lee MH, You C, Kim KH. Combined effect of a microporous layer and type I collagen coating on a biphasic calcium phosphate scaffold for bone tissue engineering. Mater. 2015;8:1150–61.
Article
Google Scholar
Optira EI, Moldovan L, Craciunescu O, Zarnescu O. In vitro behavior of osteoblast cells seeded into a COL/β-TCP composite scaffold. Cent Eur J Biol. 2008;3:31–7.
Google Scholar
Kanayama Y, Aoki C, Sakai Y. Development of low endotoxin gelatin for regenerative medicine. Biol Pharm Bull. 2007;30:237–41.
Article
PubMed
Google Scholar
Kondo N, Ogose A, Tokunaga K, Ito T, Arai K, Kudo N, et al. Bone formation and resorption of highly purified β-tricalcium phosphate in the rat femoral condyle. Biogeosciences. 2005;26:5600–8.
Google Scholar
Jung GY, Park YJ, Han JS. Effects of HA released calcium ion on osteoblast differentiation. J Mater Sci Mater Med. 2010;21:1649–54.
Article
PubMed
Google Scholar
Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, et al. The effect of calcium ion on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biogeosciences. 2005;26:4847–55.
Google Scholar
Tsuruoka N, Yamato R, Sakai Y, Yoshitake Y, Yonekura H. Promotion by collagen tripeptide of type I collagen gene expression in human osteoblastic cells and fracture healing of rat femur. Biosci Biotechnol Biochem. 2007;71:2680–7.
Article
PubMed
Google Scholar
Hata S, Hayakawa T, Okada H, Hayashi K, Akimoto Y, Yamamoto H. Effect of oral administration of high advanced-collagen tripeptide (HACP) on bone healing process in rat. J Hard Tissue Biol. 2008;17:17–22.
Article
Google Scholar