The present prospective study was conducted at a private practice (Tommaso Grandi, Modena) in Italy between October 2014 and January 2016.
Any patient with partial edentulism in posterior regions of mandible (premolar/molar areas), requiring one multiple tooth implant-supported restoration (2-, 3-, or 4-unit bridge), having a residual bone height of at least 8 mm and a thickness of at least 4 mm measured on computerized tomography (CT) scans, and who was 18 or older and able to sign an informed consent form, was eligible for inclusion in this trial. Preoperative periapical X-rays were used for initial screening, followed by computer tomography scans to precisely quantify the amount of bone. Patients were not admitted in the study if any of the following exclusion criteria was present: (1) general contraindications to implant surgery, (2) residual bone thickness greater than 5 mm, (3) subjected to irradiation in the head and neck area, (3) treated or under treatment with intravenous amino-bisphosphonates, (4) poor oral hygiene and motivation, (5) untreated periodontitis, (6) uncontrolled diabetes, (7) pregnant or lactating, (8) substance abusers, and (9) lack of opposite occluding dentition in the area intended for implant placement. The principles outlined in the Declaration of Helsinki on clinical research involving human subjects were adhered to. All patients received thorough explanations and signed a written informed consent before being enrolled in the trial. Forty-two patients were consecutively recruited and treated in a private dental practice by one operator (Tommaso Grandi, who performed all the surgical and prosthetic interventions). All patients underwent at least one session of oral hygiene instructions and professionally delivered debridement when required prior to the intervention. Anti-microbial prophylaxis was obtained with 1 g of amoxicillin and clavulanic acid (Augmentin, Roche S.p.A., Milan, Italy) every 12 h from the day before surgery to the sixth postsurgical day. Patients allergic to penicillin were given clarithromycin 500 mg (Klacid, Abbott srl, Roma, Italy) 1 h before the intervention and 250 mg twice a day for one week. On the day of surgery, patients were treated under local anesthesia. Full-thickness crestal flaps were elevated with a minimal extension to reduce patient discomfort. The implant sites were prepared according to the procedure recommended by the implant manufacturer (JDentalCare, Modena, Italy). Tapered narrow-diameter implants titanium grade 5 (2.75 and 3.25 mm diameter, respectively, JDIcon Ultra S and JDEvolution S, JDentalCare) with internal connection and sandblasted and acid-etched treated surface were used (Fig. 1a, b). No bone flattening was performed. The implants were inserted in the bone without any fenestration/dehiscence. The implant neck was positioned at the coronal marginal crest level. The operator was free to choose implant lengths (8, 10, 11.5, and 13 mm) and diameter (2.75 and 3.25 mm) according to clinical indications. One implant for each missing tooth was requested to be inserted. Healing abutments were attached, and implants were left to a nonsubmerged healing. Interrupted sutures were placed using a synthetic monofilament thread (Vycril, Ethicon, Johnson & Johnson, Somerville, New Jersey) and were removed after 10 days. After 3 months, all the implants underwent the standard prosthetic protocol and were loaded directly with definitive screw-retained or cemented multiple splinted crowns.
Primary outcome measures were as follows:
-
Implant failure: evaluated as implant mobility and removal of stable implants dictated by progressive marginal bone loss or infection. The stability of each implant was measured manually by tightening the abutment screw with a wrench delivering a torque of 20 Ncm. Implant stability assessment was performed at delivery of definitive crowns (3 months after implant placement). After insertion of the definitive restorations, prostheses were not removed to assess clinical mobility of individual implants.
-
Complications: any biological and prosthetic complication occurred at the implant site during the entire follow-up time were recorded and reported.
Secondary outcome measures were as follows:
-
Peri-implant marginal bone level changes: evaluated on intraoral radiographs taken with the paralleling technique at implant placement, 6 months and 1 year after loading. All measurements were taken by an independent assessor (LS). Radiographs were scanned, digitized in JPG format, converted to TIFF format with a 600 dpi resolution, and stored in a personal computer. Peri-implant marginal bone levels were measured using Image J 1.42 software (National Institute of Mental Health, MD, USA). The software was calibrated for every single image using the known implant diameter. Measurements of the mesial and distal crestal bone levels adjacent to each implant were made to the nearest 0.01 mm and averaged at patient level and then group level. The measurements were taken parallel to the implant axis. Reference points for the linear measurements were the most coronal margin of the implant collar and the most coronal point of bone-to-implant contact.
Statistical analysis was performed using the statistical package StatView (version 5.01.98, SAS Institute Inc., Cary, NC, USA). Significance was considered at p < 0.05. The paired-samples t test was used to evaluate the bone level changes. The patient was the statistical unit of the analysis. A medical doctor (GG) with expertise in dental biostatistics analyzed the data.