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Abstract

Background: Previous studies have shown that porous composite blocks containing uncalcined hydroxyapatite
(u-HA; 70 wt%) with a scaffold of poly-DL-lactide (PDLLA, 30 wt%) are biodegradable, encourage appropriate
bone formation, and are suitable for use as a bone substitute in vertical ridge augmentation. The present
study aimed to accelerate osteogenesis in vertical ridge formation by adding types 1 and 3 collagen to the
u-HA/PDLLA blocks and assessing the effect.

Material and methods: The bone substitute in the present study comprised porous composite blocks of u-HA
(70 wt%) with a PDLLA (27-29 wt%) scaffold and enriched with types 1 and 3 collagen (1.7 ~ 3.4 wt%). The control
blocks were composed of u-HA (70 wt%) and PDLLA (30 wt%). The materials were formed into 8-mm diameter, 2-mm
high discs and implanted onto the cranial bones of six rabbits. The animals were sacrificed 4 weeks after implantation,
and histological and histomorphometrical analyses were performed to quantitatively evaluate newly formed bone.

Results: New bone formation occurred with both block types, showing direct contact with the original bone.
Mean + standard deviation bone formation was significantly greater in the experimental blocks (25.6% + 4.8%)
than in the control blocks (17.0% + 4.7%).

Conclusions: Histological and histomorphometrical observations indicated that new bone was formed with
both block types. The u-HA/PDLLA block with types 1 and 3 collagen is a more promising candidate for
vertical ridge augmentation than the u-HA/PDLLA alone block.

Keywords: Collagen, Dental implants, Osteogenesis, Poly-DL-lactide, Vertical ridge augmentation, Uncalcined
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Background

Dental implants are widely used to restore missing teeth
and have become an essential treatment modality with a
high success rate [1, 2]. In fact, advances in dental
implant techniques and bone substitution materials have
contributed to an increase in the restoration of partially
and totally edentulous patients. However, to achieve the
goals of implant dentistry, hard and soft tissues of
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adequate volume and quality to support the implant
need to be present. In particular, inadequate bone
volume or quality can compromise functional and
esthetic treatment outcomes [3—10], because clinicians
are forced to place implants in positions where not
enough bone is available. For this reason, techniques
and materials that promote predictable regeneration
have become necessary [11]. For instance, some patients
may require an additional bone graft at the site of insuf-
ficient bone volume to ensure predictable long-term
function and good esthetic treatment outcomes, and
various surgical techniques that improve bone volume
have therefore been presented in the literature [11, 12].
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In the case of severely resorbed alveolar ridge, various
augmentation operative procedures can be used to pro-
vide sufficient bone volume for reliable placement of
dental implants. These techniques include extraction
socket defect grafting, horizontal ridge augmentation,
and vertical ridge augmentation. Regarding ridge aug-
mentation specifically, autografts are the most predict-
able and successful bone grafting material [13-16]. They
are more biocompatible and have a lower complication
rate than other grafting materials. However, autografts
have many drawbacks that may cause a patient to reject
them as a donor source in clinical practice: they have
limited availability and a high resorption rate, and they
necessitate harvesting surgery, which is associated with
morbidity, bleeding, and a risk of nerve injury [17, 18].
Alternative materials have been used to overcome these
limitations, such as synthetic bone grafts, xenografts,
allografts, or a combination of these [17].

Biodegradable polymers have gained widespread atten-
tion as scaffold materials in tissue engineering and have
a wide range of mechanical and physical properties that
can be engineered appropriately to promote tissue
regeneration. For instance, porous scaffolds are capable
of carrying bioactive molecules and extracellular matrix
[19], and delivering signal molecule proteins via
poly-DL-lactide (PDLLA) induces a prominent increase
in bone volume [20, 21].

Previous studies have demonstrated the biodegradable
and osteogenic properties of porous composite blocks
comprising uncalcined hydroxyapatite (u-HA; 70 wt%)
with a scaffold of PDLLA (30 wt%). These composite
blocks are biodegradable and result in appropriate bone
formation. Thus, they may be useful as a material in ver-
tical ridge augmentation [22]. However, because PDLLA
is highly hydrophobic, it is unconducive to cell invasion
and proliferation [23]. Therefore, the present study
aimed to accelerate osteogenesis by adding collagen
types 1 and 3 to u-HA/PDLLA blocks, as well as to
assess the effect of this collagen enrichment on vertical
ridge augmentation.

Methods

Materials

The experimental material comprised porous composite
blocks of u-HA/PDLLA enriched with types 1 and 3 col-
lagen (porosity calculated from an apparent density of
70% and a pore diameter of 40-480pum [average
170 pm]). The blocks of u-HA/PDLLA were dipped into
types 1 and 3 collagen solution (NMP Collagen PS; NH
foods Ltd, Ibaraki, Japan/concentration: 2%) with
phosphate-buffered saline under reduced pressure using
syringe barrel. The approach under reduced pressure
was kept to dip for 20 min under ordinary temperature.
After that, the blocks were dried under low temperature.
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The chemical composition was as follows: u-HA, 70
wt%; PDLLA (Mw 77 kDa), 27-29 wt%; types 1 and 3
collagen 1-3wt% (NMP Collagen PS; NH foods Ltd.,
Ibaraki, Japan). The material was formed into discs
measuring 8 mm in diameter x 2 mm in height (Fig. 1).
The compressive strength of this material was close to
that of cancellous bone (4.1 MPa). Control blocks were
composed of a u-HA (70 wt%)/PDLLA (30 wt%) com-
posite. Fixation pins made from composites of u-HA
particles and poly-L-lactic acid (super-Fixsorb®; Takiron
Co., Ltd., Osaka, Japan) were used to fix the discs (Fig. 1).

Surgical procedure

Experimental protocols were approved by the Institu-
tional Committee of Animal Care and Use at Tokyo
Medical and Dental University (Approval Number:
0160314A). The experimental and control materials
were implanted onto the cranial bone of six Japanese
male white rabbits weighing 3.2-3.8 kg. Specifically, the
surgical area was shaved and disinfected with iodine to
ensure aseptic conditions. The surgery was performed
under local anesthetic (2% xylocaine/epinephrine,
1:80,000; Dentsply Sankin, Tokyo, Japan). A linear inci-
sion was made from the nasal bone to the midsagittal
crest. A recipient bed was then created by marking the
calvarial bone using an 8-mm trephine bur and clearing
the cortical bone using burs (Fig. 2a). The area was
rinsed with saline to remove bone debris, and the center
of the recipient site was perforated with a 1.3-mm drill.
The samples were positioned and fixed using fixation
pins at each of the placement areas (Fig. 2b). Thereafter,
the wounds were closed with sutures. The periosteum
(pericranium) and skin were then closed in layers using
non-absorbable 5-0 and 4—0 nylon sutures, respectively.

Fig. 1 Graft materials. Fixation pin u-HA/PLLA (1.5mm in
diameter x 6 mm in length). u-HA/PDLLA composite block (8 mm
in diameterx 2 mm in height)
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Fig. 2 Surgical procedure. Creation of the recipient bed. The calvarial bone is marked by an 8-mm trephine bur (a). The cortical bone is cleared
using burs (b). The area is rinsed with saline to remove bone debris and the center of the recipient bed is perforated with a 1.3 mm drill bit (c).
The recipient beds are finished preparation (d).The blocks are positioned and fixed with fixation pins at each of the prepared sites (e)

Animals were sacrificed 4 weeks later using a lethal dose
of thiopental sodium. The entire cranial bone was
removed and fixed in 10% neutral formalin for 7 days.

Histological analysis

The sample blocks were decalcified in Plank—Rychlo’s
solution for 2 days and then embedded in paraffin. The
samples were sectioned parallel to the sagittal axis.
Analysis under a light microscope was performed
following hematoxylin and eosin (HE) staining.

Histomorphometric analysis

Bone formation was evaluated using quantitative
methods after HE staining. Each section was observed
under a light microscope, and Image] software (Na-
tional Institutes of Health, Bethesda, MD, USA) was
used for image processing. Histological and histo-
morphometrical analyses were performed to quanti-
tatively evaluate the percentage of newly formed
bone, which was calculated using the following equa-
tion: (newly formed bone volume [%]) = (area of new
bone in the material)/(implant material area) x 100.

Statistical analysis

Statistical analysis was performed using SPSS v. 18.0 for
Windows (SPSS Inc., Chicago, IL, USA). To compare
the newly formed bone volume between the control and
experimental groups, one-way analysis of variance was
performed on the data obtained from the histomorpho-
metric analysis. Significant differences were evaluated
using the least significant difference test. The results
were expressed as mean *standard deviation (SD).
Differences between the groups were assessed using the
Mann—Whitney U test. P values < 0.05 were considered
significant.

Results

Light microscopic observations

In both groups, there was direct contact between the
original and newly formed bone. The bone formation
had occurred in the pores, overwhelming the host bone
(lower) side of both blocks. Degradation of the material
was evident at the periphery. In both the control and the
experimental block, the newly formed bone reached half
of the material’s height (Fig. 3a, b). In a magnified image,
osteoblast cells, foreign body giant cells, and the newly
formed bone were observed adjacent to the block. In
addition, newly formed bone and foreign body giant cell
infiltration were observed in the block material, and
osteoblast cells were noted adjacent to the newly formed
bone (Fig. 4a, b). Although there were some inflamma-
tory and foreign body reactions, these were infrequently
observed during the period examined.

Histomorphometry

Histomorphological assessment of the newly formed
bone with both block types is shown in Fig. 5. The mean
+SD bone formation was significantly greater in the
blocks composed from u-HA/PDLLA plus types 1 and 3
collagen (25.6% +4.8%) than in the u-HA/PDLLA
control blocks (17.0% + 4.7%) (Fig. 5).

Discussion

The present study examined whether the hydrophilic
properties of the composite material u-HA/PDLLA con-
taining types 1 and 3 collagen increased osteogenic ability.
It also assessed the efficacy of this porous material in ver-
tical bone augmentation.

It has previously been determined that HA/PDLLA is
a highly absorbent substance [22]. In the present study,
the absorption appeared to occur in two phases: early
and late. In the early phase, the type 1 and 3 collagen
was rapidly removed, as observed in a previous
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Fig. 3 Histological. a u-HA/PDLLA + types 1 and 3 collagen. b u-HA/PDLLA
A\

J

experimental study involving an animal model [24].
Therefore, although large amounts of collagen were
present on days 1 and 3, only traces remained at 4
weeks, and no graft remnants were found in specimens
representing later intervals of healing. A previous study
described the late phase of absorption, wherein the
amount of u-HA/PDLLA was found to diminish sig-
nificantly with time [22].

The absorption characteristics of materials depend on
several parameters, including molecular architecture, the
degree of crystallinity, and the copolymer ratio [19]. In
the case of bioartificial materials, in vivo absorption
occurs via three processes: cellular absorption by multi-
nuclear giant cells, degradation by tissue fluids [25], and
non-enzymatic hydrolysis [19], which appears to be
extensive in the primary events of degradation.

In the present study, histological and histomorpho-
metrical observations were used to evaluate the efficacy
of vertical augmentation. Newly formed bone was
demonstrated histologically in both the experimental
and the control group. After 4 weeks, there was newly
formed bone in direct contact with the surface of the
block. A fibrous tissue layer was not present between
the block and the host bone. The newly formed bone
had infiltrated deeply into the material. Histological
findings implied that the generated bone had mainly
begun forming on the surface of the host bone. Virtually
no newly formed bone was observed to begin forming
on the periosteum side. These findings differ from those
of a bone defect model, in which new bone was formed
for the most part from the edge of the host bone at the
base of the defect, as well as from the periosteum [13].
This difference might be due to the fact that it was diffi-
cult to achieve flap closure without tension during the
external augmentation procedure. As a result, the blood
supply may have been disrupted, leading to ischemia

[14], which may in turn have prohibited the recruitment
of osteogenic cells from the periosteum.

In the histomorphometrical assessment, the u-HA/
PDLLA blocks enriched with types 1 and 3 collagen
were associated with significantly greater bone for-
mation (25.6% +4.8%) than u-HA/PDLLA-only blocks
(17.0% + 4.7%). Furthermore, histological and morpho-
metric analysis indicated that collagen promoted the
new formation of bone in the augmentation models.
Therefore, it is likely that types 1 and 3 collagen
increase osteogenic ability, and that these materials
could be combined with cells and growth factors in
cell therapy and tissue engineering approaches that
enhance or accelerate bone repair.

Collagen constitutes the primary structural element of
connective tissue, which is responsible for the functional
integrity of the bone, cartilage, skin, and tendon, in
which collagen accounts for most of the proteins
present. It is also crucial to the structural integrity of
blood vessels and most organs, where it forms a frame-
work within which tissues can function. Importantly in
the present context, collagen is present within the
connective tissue of the periodontium, and a variety of
conditions in humans, both healthy and pathological,
involve the repair and regeneration of this collagenous
framework [26]. There are two possible explanations for
the significant effect of collagen addition on the
bone-forming ability of the composite material. First, the
surface of PDLLA is hydrophobic [23] and has low bio-
activity [27]. These properties inhibit cell infiltration and
osteogenesis, both of which would be accelerated by the
addition of collagen. Second, collagen can be employed
as a hemostatic agent and as a scaffold for bone and
cartilage tissue engineering [28-30]. In fact, it is one of
the most widely used bone-filling biomaterials in current
bone tissue engineering [31-33]. In addition, collagen



Akino et al. International Journal of Implant Dentistry (2019) 5:16

Fig. 4 Histological (magnified image). A u-HA/PDLLA + types 1 and
3 collagen. B u-HA/PDLLA. a, material; b, newly formed bone; «,
osteoblast; m, bone marrow cell; *, foreign body giant cell
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may also have bone-repairing abilities [34]. In one study,
the addition of collagen to a fibrin network increased
osteoblast differentiation in a dose-dependent way [35].
Furthermore, several studies have evaluated the
influence of hemostatic agents on bone repair and
have found both positive and negative results for
collagen [34, 36].

Collagen breakdown can occur during inflammation,
trauma, tissue breakdown, remodeling, and tissue repair
or wound healing, and the process has two different
pathways [37]: an intracellular and an extracellular route
[38-40]. Under non-pathological conditions, phago-
cytosis, and intracellular digestion of collagen occurs
continuously in dynamic soft connective tissues [41, 42].
This was corroborated in the present study by the
results of surgery, which involved incision and
avulsion of the periosteum and osteotomy of the cranial
bone—procedures that disrupt the balance between syn-
thesis and degradation. Indeed, even during the early
phase of new bone formation, much of the collagen is
broken down to make space for the infiltrating inflamma-
tory cells, leading to swelling and redness in the tissue. It
follows that sufficient collagen is necessary for tissue
repair, explaining why the u-HA/PDLLA enriched with
types 1 and 3 collagen resulted in a significantly more
newly formed bone than the u-HA/PDLLA-alone blocks.

Collagen appears to enhance the activity of fibroblast
cells themselves. When it is applied to defects of the skin
or mucous membranes, vascular cells invade from the
surrounding tissue. After the new structure has been
formed, collagen is gradually degraded and absorbed
with maturation [43]. Furthermore, collagen has a
hemostatic effect that appears to be mediated through
platelet agglutination and plasma component aggre-
gation, improving tissue regeneration in wound healing
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and organ repair [44, 45]. It may also affect tissue hea-
ling in bone—in a perforated cortical model, collagen
promoted bone augmentation, possibly by acting as a
scaffold for cells and maintaining the space for bone
growth [46]. Thus, it is likely that, in the present study,
this tissue engineering ability promoted increased new
bone formation in the experimental group.

In conclusion, u-HA/PDLLA enriched with types 1
and 3 collagen and implanted into rabbits promoted the
formation of new bone. It follows that osteogenic ability
is increased by the addition of types 1 and 3 collagen,
and this material is a more promising candidate than
u-HA/PDLLA for vertical ridge augmentation. The find-
ings of the present study should prompt further research
into this newly established approach. In particular, this
material should be combined with signaling molecules
that stimulate bone regeneration.
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