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Genomic analyses of early peri-implant bone
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Abstract

Objective: The objective of the study was to systematically review the literature for studies reporting gene expression
analyses (GEA) of the biological processes involved in early human peri-implant bone healing.

Methods: Electronic databases (MEDLINE, EMBASE) were searched in duplicate. Controlled and uncontrolled studies
reporting GEA of human peri-implant tissues - including ≥5 patients and ≥2 time points - during the first 4 weeks of
healing were eligible for inclusion. Methodological quality and risk of bias were also assessed.

Results: Four exploratory studies were included in reporting GEA of either tissues attached to SLA or SLActive implants
after 4 to 14 days or cells attached to TiOBlast or Osseospeed implants after 3 to 7 days. A total of 111 implants from 43
patients were analyzed using validated array methods; however, considerable heterogeneity and risk of bias were
detected. A consistent overall pattern of gene expression was observed; genes representing an immuno-inflammatory
response were overexpressed at days 3 to 4, followed by genes representing osteogenic processes at day 7. Genes
representing bone remodeling, angiogenesis, and neurogenesis were expressed concomitantly with osteogenesis.
Several regulators of these processes, such as cytokines, growth factors, transcription factors, and signaling pathways,
were identified. Implant surface properties seemed to influence the healing processes at various stages via differential
gene expression.

Conclusion: Limited evidence from gene expression studies in humans indicates that osteogenic processes
commence within the first post-operative week and they appear influenced at various stages by implant
surface properties.
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Introduction
Osseointegrated oral implants are an integral part of
modern reconstructive dentistry and are associated with
favorable long-term therapeutic outcomes [1]. Osseoin-
tegration was originally defined as the direct contact be-
tween vital bone and a load-bearing implant observed at
the light microscopic, i.e., histological, level [2]. Morpho-
genesis of implant osseointegration has been assessed in
several preclinical in vivo and clinical histological studies
[3-6], providing the basis for understanding the bio-
logical process.
The biological events during the early phase of

osseointegration are directly influenced by the osseous
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microenvironment (i.e., cells, signaling molecules, and
matrix) into which the implant is placed and have many
similarities with general wound healing mechanisms [7].
Implant surgery induces trauma, resulting in bleeding
and fibrin clot formation and an inflammatory reaction
that dominate the events of the first post-operative week.
The deposition of vital new bone on the implant surface
by osteoblasts (osteogenesis), a fundamental requirement
for osseointegration, occurs via secretion of a complex
extracellular matrix (ECM) of proteins, which subsequently
undergoes mineralization to form bone [8,9]. Primary
(woven) bone lined by osteoblasts can indeed be observed
on the implant surface already after 1 week [3,5]. In
parallel, removal of the created bone debris and remod-
eling of necrotized bone (due to the pressure exerted
by the implant) is underway. Replacement of woven
bone by organized and mechanically superior lamellar
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bone can be observed from the second to fourth week
(depending on the species) and progressively increases
until woven bone is almost entirely replaced (8 to 12 weeks).
These events, including the nutrition of the newly formed
tissue, are sustained through concomitantly occurring
angiogenesis, i.e., formation of new blood vessels from
existing ones [10,11]. Thus, osseointegration is a dynamic
process whereby bone formation and remodeling occur in
parallel around the implant [4,6].
Morphogenesis of osseointegration and assessment of

the degree of bone-to-implant contact is usually performed
by means of histological evaluation [12], while the under-
lying molecular processes may be more precisely evaluated
at genetic level [13,14]. Data from gene expression analyses
of fracture healing provide the basis for understanding
these processes [15]. These studies have identified the cells,
signals, and interactions governing the key processes of
bone regeneration. Bone-forming osteoblasts are primarily
derived from marrow-resident multipotent progenitor cells
(mesenchymal stem cells (MSCs)), which are recruited to
the regeneration site. This process of MSC recruitment
and differentiation along the osteogenic lineage is termed
as osteoinduction and is controlled primarily by various
pro/anti-inflammatory cytokines (CKs) and by growth
factors (GFs) secreted by inflammatory cells and/or os-
teoblasts or by GF resident within the extracellular matrix
(e.g., bone morphogenetic proteins (BMPs)) in response to
injury [16-18]. Moreover, CKs and GFs act as signaling
molecules via specific signaling pathways and guide the
process of cell differentiation in the proper temporal se-
quence [19,20]. Intermediaries in this process are various
bone-specific transcription factors (TFs), which act as
‘molecular switches’ during cell differentiation and are
targets of CKs and GFs [21]. TFs facilitate bone-specific
gene transcription and ultimately gene expression by
which MSCs undergo differentiation and acquire the
osteoblastic phenotype [22]. While GFs regulate mainly
osteoinduction and osteogenesis, pro-inflammatory CKs
regulate the antagonist process of bone resorption by
inducing the differentiation of hematopoietic stem cells
(HSCs) into osteoclasts and macrophages [23], contrib-
uting to the dynamic nature of bone regeneration and
remodeling.
Recent in vitro [24] and preclinical in vivo [25] studies

have focused on the early molecular biological responses
to various titanium implant surfaces. Understanding these
early responses is essential for efforts aiming to accelerate
and enhance the process of osseointegration [26]. Upregu-
lation or downregulation of specific genes in peri-implant
tissues identified by analyses of genetic material (DNA,
RNA) reflects the nature and timing of the various healing
processes, which in turn could be potential ‘molecular
targets’ for enhancing osseointegration [27,28]. The aim
of the present study was to systematically review the
available literature on gene expression analyses of the
biological processes involved in early human peri-implant
bone healing.

Methods
Study design
A study protocol for a systematic qualitative literature
review was developed based on recommended methods
[29]. The focused question was ‘what biological processes
are reflected by gene expression analyses in peri-implant
tissues of humans during the early stages (up to 4 weeks)
of healing?’

Inclusion and exclusion criteria
All studies, controlled (using different implants) or un-
controlled, reporting gene expression analyses of peri-
implant tissues harvested from ≥5 human patients at ≥2
time points during the first 4 weeks of healing, were
eligible for inclusion. Studies reporting the use of either
‘experimental’ (micro) or standard implants with clear
description of implant surface properties, placed in the
maxilla or mandible and retrieved at a later time point,
were eligible for inclusion. Studies reporting (1) analyses
of peri-implant mucosa or sulcular fluid or peri-implant
tissues of failing or infected implants (peri-implantitis), (2)
only histological or immunohistochemical analyses with-
out gene expression of harvested tissues, and (3) in vitro
and preclinical in vivo studies were excluded. Primary out-
come of interest was the biological process (or processes)
reflected by gene expression at a particular time point of
peri-implant tissue healing.

Search strategy
Electronic databases of MEDLINE (via PubMed) and
EMBASE were searched by one author (SS) for rele-
vant English-language literature up to and including
June 2014. The search strategy used for MEDLINE was
((((("gene expression" OR transcriptome OR transcriptional
OR molecular OR microarray))) AND ((osseointegration
OR healing OR "peri implant"))) AND implants) AND
((human OR humans OR patients OR subjects)). Unpub-
lished literature was searched via the Google and Google
Scholar search engines. Additionally, the bibliographies of
all relevant studies and review articles were searched.

Study selection
Titles and abstracts of the search identified studies were
screened by two authors (SS and VS) based on the inclu-
sion criteria, and full texts of all eligible studies were
obtained. Differences in assessment of eligibility were
resolved by discussion with the third author (AS). Full
texts were independently reviewed by both reviewers,
and final inclusion was based on the aforementioned
inclusion criteria.
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Data extraction
Both reviewers independently extracted data from the
full texts of included articles using specially designed forms.
Data on author(s), study design, implant type/surface,
any additional procedures performed, number of patients
(in each group), presence of a control group, procedure
and time of implant retrieval, methods of gene expression
analysis, and main results, were extracted. Descriptive
summaries of the studies were entered into tables, and
a qualitative synthesis of evidence was planned. Any
disagreement between the reviewers regarding data ex-
traction was resolved by discussion.

Assessment of methodology and risk of bias
Assessment of the methodological validity of the included
studies was performed using criteria adapted from previ-
ous reports [30,31]. Aspects of study design, genotyping
methods, and data analyses were considered using nine
criteria (Table 1).
The risk of bias in the included studies was assessed

using an adaptation of published guidelines for reporting
systematic reviews of periodontal genetic association stud-
ies [32]. Mainly, aspects of study design and methodo-
logical validity were assessed using 15 criteria and scored
as ‘yes,’ ‘no,’ or ‘unclear’ based on the information provided
in the study manuscript (Table 2). Moreover, published
Table 1 Assessment of the genotyping methodology in the in

Methodology Ivanovski et al. [34] Donos et al. [35]

Tissue harvesting Tissue attached to implant
carefully removed with a
curette, preexisting hard
tissue discarded

Tissue attached to implan
carefully removed with a
curette and homogenized

Sample preparation Total RNA isolation,
purification, quantity/
quality analysis and
biotin-labeling

Total RNA isolation,
purification, quantity/
quality analysis and
biotin-labeling

Array technique Microarray hybridization
(Human WG-6 V3)

Microarray hybridization
(Human WG-6 V3)

Scanning, data
preparation

Bead Station 500/Bead
Studio v3 software, raw
probe expression values
extracted

Bead Station 500/ Bead
Studio v3 software, raw
probe expression values
extracted

Processing Noisy data discarded Noisy data discarded

Clustering GO categories (DAVID
tool)

GO categories (DAVID too

Statistical analysis Gene Spring software Gene Spring software

Comparisons Pair-wise comparisons
between three time
points (4 vs. 7 days, 7
vs. 14 days, and 4 vs.
14 days)

Pair-wise comparisons at
each time point (4, 7, and
14 days) between SLA and
SLActive surfaces

GO, gene ontology; DAVID, Database for Annotation, Visualization and Integrated D
guidance [33] regarding the qualitative and quantitative
syntheses of results from genetic association studies was
consulted, and heterogeneity across the included studies
was assessed to explore the possibility of a meta-analysis.

Results and discussion
The included studies basically report on commercially
available implants from two major manufacturers and in-
volve comparisons of different implant surface technologies
in regard with topography and/or chemistry modifications
within each implant system. Various analyses were per-
formed in the included studies; however, an attempt has
been made to synthesize the various findings and discuss
them herein irrespective of the specific implant systems,
based on the assumption that basic biological mechanisms
of peri-implant bone wound healing are largely implant
system independent.

Search results and study characteristics
Of the 242 search identified studies, only four studies
were finally included in the review, all focusing on the
impact of implant surface on early human peri-implant
bone healing (Figure 1; Table 3). Genetic analyses of total
RNA isolated from either newly formed peri-implant bone
harvested by trephination [34,35] or from cells adherent
to implants retrieved by reverse threading [36,37] were
cluded studies

Bryington et al. [36] Thalji et al. [37]

t Implants removed by reverse
threading and homogenized;
cell lysates isolated

Implants removed by reverse
threading and homogenized;
cell lysates isolated

Total RNA isolation,
quantification

Total RNA isolation, purification,
quantity/quality analysis and
biotin-labeling

RT-PCR (custom RT-PCR array
for osteogenesis genes; human
inflammatory cytokines and
receptors PCR array)

Microarray hybridization (Affymetrix
Human Gene 1.1 ST)

RT2 SYBR Green qPCR Master
Mix/7500 Real-Time PCR system

Affymetrix Gene Chip Scanner

Normalization of osteogenesis
and cytokine array

Unclear

l) Osteogenesis genes; cytokine-
related genes

GO categories (Gene Spring)

RT2 Profiler software Gene Spring software

T-test to evaluate differences
between each implant surface
per time point

Two-way ANOVAs to determine
differences between implant
surface type and time points;
pair-wise comparisons of each
implant surface independently
at different time points (day 7
vs. day 3)

iscovery.



Table 2 Assessment of risk of bias and heterogeneity within and across the included studies

Category Ivanovski et al. [34] Donos et al. 2011 [35] Bryington et al. [36] Thalji et al. [37]

Study design

Comparison None (only SLActive) SLA vs. SLActive TiOBlast vs. Osseospeed TiOBlast vs. Osseospeed

Setting University University University University

Population, inclusion
criteria

9 healthy volunteers with
no mandibular third molars,
no contraindications for oral
surgery; age 21 to 48,
median 29 years

9 healthy volunteers with
no mandibular third
molars; age 21 to 48,
median 29 years

6 women, 4 men; implant
patients, systemically healthy
(no HTN, diabetes, CVD); age
25 to 58, mean 36.2 years

9 women, 2 men; implant
patients, systemically healthy;
age 47 to 69, mean 60.2 years

Exclusion criteria Smokers Smokers Smokers, pregnancy,
periodontal/periapical
disease, subjects taking
bisphosphonates,
hormone replacement
therapy, corticosteroids

Smokers, uncontrolled
diabetes, history of
head/neck radiotherapy,
taking corticosteroids,
bisphosphonates

Comparability of groups Unclear Unclear Unclear Unclear

Potential confounders,
e.g., post-op medication

Unclear Unclear Unclear Unclear

Power calculation No No No No

Statistical correction For multiple sampling For multiple sampling Unclear For multiple sampling

Methods

Tissue analyzed Peri-implant tissue Peri-implant tissue Implant-adherent cells Implant-adherent cells

Genetic material
analyzed

Total RNA Total RNA Total RNA Total RNA

Success rate Unclear 16/18 samples (88.8%) 7/10 subject samples (70%) Unclear

Genotyping method Microarray Microarray RT-PCR Whole-genome microarray

Genotype counts Yes Yes Yes Yes

Blinding Unclear Unclear Yes Unclear

Reproducibility, validated
genotyping accuracy

No No No No

All studies were judged to be at a high risk of bias with substantial heterogeneity across studies.
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performed. In total, 111 implants from 43 patients were
analyzed. All four studies reported the use of commercially
existing implant surfaces, i.e., either a chemically modified,
hydrophilic, sand-blasted, acid-etched surface (SLActive®,
Institute Straumann AG, Basel, Switzerland); or a
Figure 1 Flowchart for study selection (n = number of studies).
hydrophilic (SLActive®) versus a hydrophobic unmodi-
fied SLA® (Institute Straumann AG, Basel, Switzerland)
surface; or a micro-topographic titanium-oxide grit-
blasted surface (TiOBlast®, AstraTech, Molndal, Sweden)
versus a chemically modified nano-topographic grit-blasted



Table 3 Summary of findings from the included studies (n = 4)

Study Ivanovski et al. [34] Donos et al. [35] Bryington et al. [36] Thalji et al. [37]

Design 9 patients; 9 implants placed 18 patients; 18 implants
placed

10 patients; 60 implants
placed

11 patients; 44 implants placed

Total RNA extracted from
peri-implant tissue
(trephine)

16 samples analyzed 42 samples analyzed Total RNA extracted from implant
adherent cells (reverse thread)

Total RNA extracted from
peri-implant tissue (trephine)

Total RNA extracted from
implant adherent cells
(reverse thread)

Surface SLActive SLA vs. SLActive TiOBlast vs. Osseospeed TiOBlast vs. Osseospeed

GE day 3/4 Upregulated Upregulated on SLA Upregulated on both surfaces No significant differences between
surfaces at any time point (P > 0.05)

CKs (TNF-a, IL-6, IL-2) Neurogenesis Osteogenesis (Runx2, Osx,
BMP6, OPN)

Results presented as GE at day 7 vs.
day 3 for each surface

Immune-inflammatory cells
(LC, MP)

Collagen organization Inflammatory CKs (IL-1A,B,
TNF)

Inflammatory NF-kB p/w Upregulated on SLActive MP activity

Ras protein p/w Upregulated on Osseospeed

Collagen organization Chemotaxis (CCL18, CXCL10,
CXCL14)

CK response Anti-inflammatory CKs
(TOLLIP, IL9, IL22)

GE day 7 Upregulated Upregulated on both surfaces Upregulated on both surfaces Upregulated on both surfaces

MSC genes (HOX, Sp3) Inflammatory CKs (IL1, IL2,
IL6, TNFS)

Osteogenesis (Runx2, Osx*,
OCN*, OPN, BMP6, BSP)

ECM (Coll, GPs, PGs)

GF (TGF-B receptor) Neurogenesis [* Osseo > TiOB; P < 0.05] Collagen organization (PLODs, LOX,
PCOLCE)

VEGF sig. (vs. day 14) Upregulated on SLActive Angiogenesis/VEGF sig. (ANXA,
EPAS1)

Wnt p/w Neurogenesis (BDNF,
NTF3)

Ossification

Downregulated ECM (OPN) Remodeling (MMPs, TIMPs)

Inflammatory NF-kB p/w
(vs. day 4)

BMP p/w (BMP4, BMP2K) Osteoclastic (CTSK, ACP5)

MAPK sig. Chemotaxis (CKs, MP activity)

Mineralization Anti-inflammatory CKs (CCL22,
CCL18)

Focal adhesion (integrins) Downregulated on both surfaces

Angiogenesis (VEGF sig.,
P13-Akt p/w)

Inflammatory CKs (IL1A, IL1B)

Downregulated on SLActive

Inflammatory cells (LC)

GE day 14 Upregulated Upregulated on both
surfaces

-

ECM (Coll, OC, ON, ALP) BMP p/w (BMP4, BMP2K)

TFs (Osx, Dlx5, Twist1, Smad6) Downregulated on both
surfaces

Remodeling (MMP, CTSK) Inflammatory cells (LC)

GFs (BMP, GDF)

Angiogenesis (VEGF sig.)

Neurogenesis
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Table 3 Summary of findings from the included studies (n = 4) (Continued)

TGF-b/BMP, Notch p/w

Ras protein p/w

Wnt-receptor genes

Notch genes (up/down)

Downregulated

Inflammatory response
(vs. day 7)

GE, gene expression; CKs, cytokines; p/w, pathway; MSC, mesenchymal stem cells; GF, growth factors; sig., signaling; ECM, extracellular matrix; TFs, transcription
factors; MP, macrophage; LC, lymphocytes; GPs, glycoproteins; PGs, proteoglycans.
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surface (Osseospeed®, AstraTech, Molndal, Sweden).
Implant retrieval times were at 3 or 4 days and
7 days in all studies and additionally at 14 days in
two studies [34,35].

Assessment of methodology and risk of bias
All studies used validated methods for gene expression
analysis; genetic data was analyzed using microarray (three
studies) or real-time PCR (RT-PCR) (one study) methods
(Table 1). Total RNA was isolated from lysates of either
trephined peri-implant tissues or implant-adherent cells,
and subjected to microarray processing or RT-PCR.
Although moderate-to-good agreement has been re-
ported between the two methods, validation of DNA
microarray results by the more sensitive PCR array is
generally recommended [38]. None of the microarray
studies identified have validated their results using
RT-PCR. Genotyping data (gene lists) were imported
and analyzed using computer software and further
condensed into functionally and biologically relevant
categories. Nevertheless, differential gene expression
in relation to a particular cell type or region of tissue
analyzed was not performed [35]. Gene ‘upregulation’
was reported when genes were expressed at a higher
level on one implant surface in comparison to another; in
context, differentiation between gene expression and over-
expression may be difficult to define. Statistical methods
were used to compare differences in gene expression
between different time points and/or implant surfaces
(P < 0.05 significance level), while correcting for possible
errors, i.e., false gene discovery rate due to multiple sam-
pling [39]. There was considerable heterogeneity across
the included studies in terms of study design, population,
implant surface technology, genotyping methods, and data
analyses (Table 2). Therefore, no meta-analysis of associ-
ation between gene expression and implant surface prop-
erties was relevant.
Thus, high risk of bias should be considered when

interpreting the results, due to the above methodological
limitations and the overall limited information (four
studies) available.
Biological processes identified through gene expression
in peri-implant tissues
Conventional implant surgery involves osteotomy prep-
aration and insertion of the implant into the alveolar bone.
The immediate local effects of this procedure, functionally
relevant to subsequent healing processes, are (1) bone
trauma, (2) formation of bone debris, (3) hemostasis and
clot formation, and (4) hypoxia. These effects involve
the release of specific CKs and GFs within the local en-
vironment [7], resulting in recruitment of two primary
cell types to the site, inflammatory cells and progenitor
cells (MSCs and HSCs) [19], which in turn regulate the
subsequent healing processes. A summary of differen-
tially regulated genes relating to the involved biological
processes is presented in Table 4, while Figure 2 repre-
sents an evidence-based illustrative model summarizing
these processes.

Inflammation
All studies reported a significant upregulation of genes
associated with inflammation during the first time point
of observation (day 3 or 4) regardless of the implant sur-
face. Specifically, upregulation regarded pro-inflammatory
cytokines of the interleukin (IL), tumor necrosis factor
(TNF), and interferon (IFN) families, as well as genes asso-
ciated with proliferation of lymphocytes and macrophages
(MPs). Previous in vitro [40,41] and animal [42] studies
have reported the significance of MPs at the bone-implant
interface and identified favorable MP activity in relation to
modified rough surfaces as demonstrated by in vitro gene
expression that was associated with increased in vivo bone
formation. Also, the nuclear factor-kB (NF-kB) inflamma-
tory pathway was upregulated at day 4 [34], while macro-
phage activity and chemokines of the CCL and CXL
families in the peri-implant tissues continued to remain
prominent at day 7.
However, this inflammatory response was generally down-

regulated at later time points (day 7 or 14). For example, in
one study, genes associated with pro-inflammatory cytokines
(IL-1B, IL-1A, IL-1R2) and chemokines (CCL22, CCL18)
were downregulated and upregulated, respectively, on day 7,



Table 4 Summary of biological processes and associated
genes reported in the included studies

Process Upregulated genes

Category (gene code)

Inflammation/immune response

Pro-inflammatory
cytokines

Tumor necrosis factor (TNF-a, TNFSF9)

Interleukin (IL-6, IL-2, IL-1 F9, IL-23A, IL-6ST)

Interferon (IFNA2)

Nuclear factor-kB (I-kB kinase/NF-kB)

Anti-inflammatory
cytokines

Interleukin (IL-22, IL-9)

Toll interacting protein (TOLLIP)

Cells Lymphocyte, macrophage negative proliferation
(BTLA, LST1)

Macrophage scavenger receptor (MSR1)

Chemotaxis Chemokines (CCR8, CCL18, CCL22, CXCL10,
CXCL14)

Osteoinduction/osteogenesis

Growth factors (GF)/
signaling pathways

Insulin-like GF (IGF1)

Transforming GF (TGF-b, TGF-b receptor 1, 2
and 3, TGF-a)

Platelet-derived GF (PDGF receptor)

Bone morphogenetic proteins (BMP4, BMP6,
BMP receptor 1A, BMP2-K)

Growth and differentiation factor (GDF10)

Wnt frizzled receptor (FZD3, FZD8, FRZB)

Notch (NOTCH2)

Ras-protein signal transduction (RAP1B, RAP1A,
RASGRP4)

Mitogen activated protein kinase (MAP3K7IP2,
MAPK9, MAP2K3, MAP3K2)

Transcription
factors

‘Master switches’ [RUNX2, SP7 (OSX)]

Homeobox (DLX1, DLX5, HOXD12, MSX1,
HOXA5, HOXB1, HOXB6, HOXC6)

SP [SP1, SP3, SP7 (Osx)]

Twist (TWIST 1-receptor)

ECM deposition/
organization

Collagen (Col1A1, Col12A1, Col6A3, Col3A1,
Col6A1, Col11A1, Col11A2, Col13A1, Col5A2)

Non-collagen proteins [BGLAP (OC), SPARC (ON),
SPP1 (OP), BSP, IBSP, POSTN, ECM1]

Small leucine-rich proteoglycans (SLRP) (DCN,
BGN, LUM)

Heat-shock protein 47 (HSP47)

Alkaline phosphatase (ALPL)

Cadherin (CDH11)

Integrin (ITGB4, ITGB5)

Laminin (LAMA2, LAMA3)

Pro-collagen lysyl-hydroxylase (PLOD1, PLOD2,
PLOD3)

Pro-collagen C-endopeptidase enhancer
(PCOLCE)

Lysyl-oxidase (LOX)

Table 4 Summary of biological processes and associated
genes reported in the included studies (Continued)

Osteoclast activity/
remodeling

Cathepsin K (CTSK, CTSK-receptor)

Tartarate-resistant acid phosphatase (TRAP/ACP5)

Matrix metallopeptidase (MMP2, MMP12, MMP9,
MMP7, MMP13)

Tissue inhibitor metallopeptidase (TIMP2, TIMP3)

Angiogenesis Vascular endothelial GF-signaling (EPAS1, ANXA2,
EGR1-binding protein)

Phosphatidyl-inositol 3-kinase (PI3K)-Akt signaling

Neurogenesis Brain-derived neurotrophic factor (BDNF)

Neurotrophin 3 (NTF3)

NK2 homeobox 2(NKX2-2)

Tubby-like protein 3 (TULP3)
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at both implant surface technologies examined (Osseospeed
and TiOBlast) [37]. Moreover, the anti-inflammatory re-
sponse seemed to be modulated by surface properties. In
one study, genes related to anti-inflammatory cytokines such
as IL-9, IL-22, toll-like receptor inhibitor protein (TOLLIP),
and several key chemokines (CCL18, CXCL10, CXCL18)
were significantly upregulated on Osseospeed surfaces but
not TiOBlast, at day 3 [36]. In another study, genes associ-
ated with inflammatory cell proliferation were significantly
downregulated earlier on SLActive surfaces compared to the
SLA, i.e., at day 7 instead of day 14 [35]. Therefore, the
initial inflammatory response seems to be important for
the recruitment of cells that govern subsequent healing
processes and is regulated by a natural biological immune
response which may be further modified by implant
surface properties.

Osteogenic differentiation
Cells along the osteogenic differentiation pathway may
be artificially categorized as (1) undifferentiated MSCs,
(2) osteo-chondro-progenitor cells, (3) pre-osteoblasts,
and (4) osteoblasts; although in reality, a developmental
continuum without distinct boundaries may exist [43].
While pre-differentiated osteoblasts in the marrow com-
partment only play a minor role in bone wound healing,
a more prominent role is that of undifferentiated MSCs
which are recruited to the regeneration site where they
differentiate into osteoblasts [16]. The recruitment and
differentiation of MSCs is regulated by CKs and GFs
[17,19]. The GFs most commonly implicated in bone
wound healing are BMPs, members of the TGF-β family,
PDGF, and IGF-1 [19,20]. Moreover, the bone debris cre-
ated during implant surgery, the peri-implant blood clot
(i.e., platelets) and the differentiating MSCs themselves
further contribute to release of GFs at the site [44,45].
All studies reported some evidence of osteogenic dif-

ferentiation at an early time point (day 3 or 4) via



Figure 2 Summary of biological processes identified via gene expression during early peri-implant bone healing. CKs, cytokines;
GFs, growth factors; EPC, endothelial progenitor cells; EC, endothelial cells; MSC, mesenchymal stem cells; OB, osteoblasts; ECM, extracellular
matrix; HSC, haematopoietic stem cells; MP, macrophages; OC, osteoclasts.
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expression of genes associated with key growth factors
(bone morphogenetic proteins (BMP4, BMP6, BMP2-
kinase), growth and differentiation factor-10 (GDF10),
transforming growth factors (TGF-α, TGF-β), platelet-
derived growth factor (PDGF), and insulin-like growth
factor-1 (IGF1)), transcription factors (Runx2, Osx, Dlx3,
Dlx5, Msx1, HOX genes, Sp1, Sp3), and/or osteogenic
signaling pathways (TGF-β/BMP signaling, Wnt-receptors,
Ras-protein/mitogen-activated protein kinase (Ras/MAPK)
signal transduction). In all studies, these genes were further
upregulated at day 7. Upregulation of osteogenic factors
seemed regulated by implant surface. The key transcription
factor osterix (Osx) was upregulated on the Osseospeed
surface, but not TiOBlast at day 7 [36], while tissues adja-
cent to SLActive surfaces demonstrated comparatively
greater BMP and Ras/MAPK expression compared to SLA
surfaces at day 7 [35]. Previous in vivo animal studies have
reported correlations between upregulated osteogenic gene
expression in peri-implant tissues and enhanced histo-
logical and biomechanical measures of osseointegration
during early (1- to 4-week) healing times [27,46]; neverthe-
less, it is unclear whether upregulation and/or overexpres-
sion of genes at a specific time point directly correlates to
increased protein production in vivo.
The key signaling pathways, via which GFs guide
osteogenic cell differentiation, are the TGF-β/BMP- and
Wnt-mediated pathways [19,47]. While the BMP pathway
ensures differentiation of MSCs into osteo-chondro-
progenitors (OCPs), the Wnt pathway is essential for
subsequent osteoblastic commitment, i.e., Wnt acts
‘downstream’ of BMP to ensure that OCPs differentiate
into osteoblasts and not chondroblasts [47]. Genes as-
sociated with both TGF-β/BMP and Wnt pathway (Wnt
receptors) were upregulated at day 7 [34,35] and day 14
[34] on SLA and SLActive surfaces, suggesting the oc-
currence of osteogenic differentiation at these time points.
GF-regulated signaling pathways exert their effects on

differentiating cells via activation of TFs. The TFs Runx2
and Osx are considered as ‘master switches’ and absolute
requirements for osteoblast differentiation [21] - while
Runx2 is essential for MSC differentiation, Osx acting
‘downstream’ of Runx2 controls osteoblastic fate deter-
mination [48,49]. An upregulation of these genes was
observed in relation to the TiOBlast, Osseospeed, and
SLActive surfaces in the present review. However, at
day 7, expression of Osx was significantly greater on
Osseospeed than TiOBlast surfaces. This finding is con-
sistent with previous animal [50,51] and human studies
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[52] where superior in vivo osseointegration (i.e., larger
amount of bone-to-implant contact occurring earlier)
of Osseospeed versus TiOBlast implants was reported.
Thus, it appears that implant surface topography and/
or chemistry influence peri-implant bone healing in
humans both at the signaling pathway and transcrip-
tion factor level.
ECM production
Deposition of new bone on the implant surface involves
the secretion of a complex ECM (scaffold) of proteins by
osteoblasts, which subsequently undergoes mineralization
[9]. Expression of ECM proteins is a reliable indicator of
early osteogenic activity [19] and was identified in all four
studies at days 7 and 14. All studies reported some
evidence of ECM production and/or organization at
days 7 and 14. Upregulated genes associated with ECM
deposition included various collagens (Col 1 to 11),
non-collagen proteins (osteopontin (OPN), osteonec-
tin (ON), osteocalcin (OCN), bone sialoprotein (IBSP),
periostin (POSTN), and ECM protein-1), alkaline phosphat-
ase (ALP), and bone-specific adhesion proteins (integrins
(ITGB4, ITGB5), laminins (LAMA2, LAMA3), and cadher-
ins (CDH11)). Osteocalcin, the most bone-specific ECM
protein and a late marker of osteogenic differentiation [19],
was significantly upregulated on Osseospeed (versus
TiOBlast) surfaces at day 7 [36]. Osteopontin, an ECM
protein essential for mineralization [53], was significantly
upregulated on SLActive comparing to SLA surfaces at
day 7 [35]. The possibility that implant surface features
enhance osteogenic differentiation of MSCs via upregula-
tion of specific genes (e.g., SLActive versus SLA in regard
with BMP and Wnt signaling) has been demonstrated
in vitro [54].
Furthermore, genes associated with collagen fibril for-

mation/organization (heat-shock protein-47 (HSP-47),
pro-collagen C-endopeptidase enhancer (PCOLCE), small
leucine-rich proteoglycans (SLRP)) and post-translational
modification (pro-collagen lysyl-hydroxylases (PLOD1,
PLOD2, PLOD3) and lysyl-oxidase (LOX)) were upregu-
lated on Osseospeed and TiOBlast surfaces [37]. Collagen
comprises approximately 90% of the ECM and collagen
fibrillogenesis and organization directly determine the
biomechanical properties of bone [55,56]. Genes associ-
ated with collagen fibril formation, maturation, and post-
translational modification expressed by osteoblasts [57,58]
were upregulated on TiOBlast and Osseospeed implants,
representing early ECM organization at the bone-implant
interface. These modifications determine the pattern of
collagen cross-linking which in turn influences tissue
organization, mineralization, and ultimately mechanical
bone strength [56], and in the case of osseointegration,
the integrity of the bone-implant interface [37].
Osteoclastic activity and remodeling
While GFs regulate osteogenesis, pro-inflammatory CKs
(e.g., IL-1, IL-6, TNF-α) simultaneously regulate the an-
tagonist process of bone resorption via osteoclasts [23].
Moreover, osteoblasts themselves stimulate osteoclasto-
genesis via macrophage colony stimulating factor (M-CSF)
and receptor activator of NF-kB ligand (RANKL) genes
but also closely regulate this process via osteoprotegerin
(OPG), an inhibitor of RANKL [59].
Two studies reported expression of genes associated with

osteoclastic activity and ECM degradation (cathepsin-K
(CTSK), tartarate-resistant acid phosphatase (ACP5), and/
or matrix metalloproteinases (MMPs)), on Osseospeed
and TiOBlast surfaces at day 7 [37], and SLActive sur-
faces at day 14. However, upregulation of MMP inhibi-
tors (TIMP-2, -3) was also reported on TiOBlast and
Osseospeed surfaces suggesting a control of the resorp-
tion process. Although no studies reported differential
RANKL/OPG expression, a previous in vitro study [60]
reported significant downregulation of osteoclastogenic
genes on SLActive surfaces. Collectively, these data re-
affirm the dynamic nature of bone formation and resorp-
tion at the implant-bone interface, even in early healing
stages, and suggest the possibility for implant surface tech-
nology modulation of bone remodeling.

Angiogenesis
Angiogenesis is closely related to osteogenesis and occurs
simultaneously during bone regeneration [11]. Physiological
oxygen tensions in bone are about 12.5% O2 but fall to 1%
O2 in regeneration sites due to disruption of the local
vasculature as a result of injury and/or surgery [61,62]. A
key event that stimulates angiogenesis (and osteogenesis)
at regeneration sites is hypoxia, via the hypoxia inducible
(transcription) factor-1 (HIF-1) that regulates expression
of angiogenic genes [63]. The key cells involved in angio-
genesis are macrophages, which in response to hypoxia
and inflammation release chemotactic and angiogenic
growth factors (e.g., VEGF) [40,64], and endothelial pro-
genitor cells (EPCs) which differentiate into endothelial
cell lining blood vessels [65]. VEGF is the single most
important regulator of EPC differentiation and vessel
formation [66]. Moreover, a role for VEGF in osteogenic
differentiation has also been suggested mainly via inter-
action with the BMP signaling pathway [67].
In the present review, a significant simultaneous upregu-

lation of several angiogenesis-related genes was identified
at day 7 in all included studies. Pro-angiogenic factors
(ANXA2, EPAS-1) were upregulated at TiOBlast and
Osseospeed surfaces at day 7 [37]. Genes associated
with VEGF and P13K-AKT signaling pathways were up-
regulated at SLActive (but not SLA) surfaces on day 7
and continued to be upregulated on day 14 [35]. The
P13K-AKT pathway is reported to be important for
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endothelial cell survival, migration, and vessel formation,
in addition to aiding VEGF-mediated angiogenesis [68].
Previous in vitro studies have reported the pro-angiogenic
effects of SLActive surfaces by promoting VEGF expres-
sion in EPCs and osteoblasts [65,69], while enhanced
histological osseointegration of SLActive implants has
been directly correlated with increased angiogenesis in
a dog model [70,71]. Thus, implant surface technology
appears to have the possibility to also influence angio-
genesis at early stages of wound healing.

Neurogenesis
Bone innervation includes both myelinated and unmyelin-
ated nerve fibers located in the periosteum, bone cortex,
Haversian systems, Volkmann’s canals, and the marrow
spaces [72]. An interesting finding in the present review
was the significant upregulation of genes associated with
neurogenesis, more than any other biological process, on
SLActive and SLA surfaces at all time points [34,35]. Spe-
cific processes represented were axon formation, growth
and differentiation, and the neural signaling pathway. This
is consistent with previous in vivo reports of murine frac-
ture healing [73] and calvarial defect regeneration in rela-
tion to SLA surfaces [74,75]. Key neurotrophic factors
(brain-derived neurotrophic factor (BDNF) and neurotro-
phin 3 (NTF3)), essential for neuronal survival and dif-
ferentiation during development [76], were significantly
upregulated on SLActive versus SLA surfaces at day 7
suggesting an effect of surface modulation. The P13K-
AKT pathway, upregulated on SLActive surfaces (in
relation to angiogenesis), has also been implicated in
neuronal survival and subsequent neural development
[77,78] and could have contributed to upregulation of
neurogenic genes at these surfaces. Indeed, previous
histologic reports have described changes in bone in-
nervation after implant placement (and loading) and the
presence of nerve fibers within the peri-implant bone, in
animals and humans [79-81].
It can be hypothesized that peri-implant neurogenesis

is one of the underlying mechanisms governing the
phenomenon of osseoperception, defined as the tactile
sensibility of osseointegrated implants to occlusal forces
induced via activation of nerve endings and/or receptors
in the peri-implant environment [82,83]. Moreover, re-
cent evidence suggests that implant surface properties
may influence the degree of osseoperception in humans
[84], which can be correlated with the genomic evidence
for implant surface modulation of neurogenesis during
osseointegration.
Finally, the present review findings are consistent with

a recent gene expression study of healing extraction sockets
in humans [85]. This study reported an initial upregulation
of pro-inflammatory cytokines (IL-1, IL-6) at day 1, but
by day 7, genes suggestive of immune response (IL-10),
osteogenesis (TGF, BMP4, BMP7, OCN and ALP), and
angiogenesis (VEGF) were upregulated, continuing until
day 14, suggesting that the basic biological processes
governing alveolar wound healing and osseointegration
are the same.
Conclusions
Based on limited evidence of gene expression data from
four studies involving 43 patients, the following remarks
can be made:

1. Early peri-implant healing (2 weeks) involves a
sequence of biological events which are similar to
those observed in other bone wound healing
scenarios (fractures, extraction-sockets).

2. Osseointegration depends on osteogenesis at the
implant interface, but other simultaneously
occurring processes such as inflammation, bone
resorption, angiogenesis and neurogenesis also play
an important role, as evidenced by consistent and
concomitant gene expression.

3. Several genes associated with key regulators of
biological processes, such as cells, cytokines, growth
factors, transcription factors, signaling pathways,
and secretory products, were shown to be
differentially regulated during peri-implant healing
in a manner that was largely consistent - in terms of
nature and timing - with previous in vitro and
preclinical in vivo histological studies of
osseointegration.

4. Implant surface technology can influence
osseointegration, at every step of the early wound
healing process, i.e., anti-inflammatory response,
progenitor cell recruitment, osteoinduction, growth
factor/transcription factor expression, signaling
pathway regulation, and extracellular matrix
production. However, the relevance of those
observations is questionable; no distinct differences
have been demonstrated in terms of histological
outcomes at later time points or short- and long-term
clinical performance among the various implant
surface technologies discussed herein.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SS conceived and carried out the study and drafted the manuscript. VS and
AS participated in carrying out the study and drafting the manuscript. All
authors read and approved the final manuscript.

Author details
1Department of Periodontology, Faculty of Odontology, Malmö University,
Carl Gustafs väg 34, 214 21 Malmö, Sweden. 2Centre for Oral Rehabilitation &
Implant Dentistry, 1 Laxmi Niwas, 87 Bajaj Road, Vile Parle West, Mumbai
400056, India.



Shanbhag et al. International Journal of Implant Dentistry  (2015) 1:5 Page 11 of 12
Received: 14 November 2014 Accepted: 27 January 2015

References
1. Setzer FC, Kim S. Comparison of long-term survival of implants and

endodontically treated teeth. J Dent Res. 2014;93(1):19–26.
doi:10.1177/0022034513504782.

2. Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated
titanium implants. Requirements for ensuring a long-lasting, direct bone-to-
implant anchorage in man. Acta Orthop Scand. 1981;52(2):155–70.

3. Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone
formation adjacent to endosseous implants. Clin Oral Implants Res.
2003;14(3):251–62. doi:972.

4. Abrahamsson I, Berglundh T, Linder E, Lang NP, Lindhe J. Early bone
formation adjacent to rough and turned endosseous implant surfaces. An
experimental study in the dog. Clin Oral Implants Res. 2004;15(4):381–92.
doi: 10.1111/j.1600-0501.2004.01082.x.

5. Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early
osseointegration to hydrophilic and hydrophobic implant surfaces in humans.
Clin Oral Implants Res. 2011;22(4):349–56. doi:10.1111/j.1600-0501.2011.02172.x.

6. Bosshardt DD, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Lang NP. The role
of bone debris in early healing adjacent to hydrophilic and hydrophobic
implant surfaces in man. Clin Oral Implants Res. 2011;22(4):357–64.
doi:10.1111/j.1600-0501.2010.02107.x.

7. Terheyden H, Lang NP, Bierbaum S, Stadlinger B. Osseointegration -
communication of cells. Clin Oral Implants Res. 2012;23(10):1127–35.
doi:10.1111/j.1600-0501.2011.02327.x.

8. Marco F, Milena F, Gianluca G, Vittoria O. Peri-implant osteogenesis in health
and osteoporosis. Micron. 2005;36(7–8):630–44. doi:10.1016/j.micron.2005.07.008.

9. Sela J, Gross UM, Kohavi D, Shani J, Dean DD, Boyan BD, et al. Primary
mineralization at the surfaces of implants. Crit Rev Oral Biol Med.
2000;11(4):423–36.

10. Raghavendra S, Wood MC, Taylor TD. Early wound healing around
endosseous implants: a review of the literature. Int J Oral Maxillofac
Implants. 2005;20(3):425–31.

11. Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for
engineering bone. Eur Cell Mater. 2008;15:100–14.

12. Sağirkaya E, Kucukekenci AS, Karasoy D, Akça K, Eckert SE, Çehreli MC.
Comparative assessments, meta-analysis, and recommended guidelines for
reporting studies on histomorphometric bone-implant contact in humans.
Int J Oral Maxillofac Implants. 2013;28(5):1243–53.

13. Kojima N, Ozawa S, Miyata Y, Hasegawa H, Tanaka Y, Ogawa T. High-
throughput gene expression analysis in bone healing around titanium
implants by DNA microarray. Clin Oral Implants Res. 2008;19(2):173–81.
doi:10.1111/j.1600-0501.2007.01432.x.

14. Lin Z, Rios HF, Volk SL, Sugai JV, Jin Q, Giannobile WV. Gene expression
dynamics during bone healing and osseointegration. J Periodontol.
2011;82(7):1007–17. doi:10.1902/jop.2010.100577.

15. Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular
mechanisms controlling bone formation during fracture healing and
distraction osteogenesis. J Dent Res. 2008;87(2):107–18.

16. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration.
Eur Spine J. 2001;10 Suppl 2:S96–101. doi:10.1007/s005860100282.

17. Miron RJ, Zhang YF. Osteoinduction: a review of old concepts with new
standards. J Dent Res. 2012;91(8):736–44. doi:10.1177/0022034511435260.

18. Ito H. Chemokines in mesenchymal stem cell therapy for bone repair: a
novel concept of recruiting mesenchymal stem cells and the possible cell
sources. Mod Rheumatol. 2011;21(2):113–21. doi:10.1007/s10165-010-0357-8.

19. Hughes FJ, Turner W, Belibasakis G, Martuscelli G. Effects of growth factors
and cytokines on osteoblast differentiation. Periodontol 2000. 2006;41:48–72.
doi:10.1111/j.1600-0757.2006.00161.x.

20. Scheller EL, Krebsbach PH. The use of soluble signals to harness the power
of the bone microenvironment for implant therapeutics. Int J Oral
Maxillofac Implants. 2011;26(Suppl):70–9. discussion 80–4.

21. Marie PJ. Transcription factors controlling osteoblastogenesis. Arch Biochem
Biophys. 2008;473(2):98–105. doi:10.1016/j.abb.2008.02.030.

22. Fakhry M, Hamade E, Badran B, Buchet R, Magne D. Molecular mechanisms
of mesenchymal stem cell differentiation towards osteoblasts. World J Stem
Cells. 2013;5(4):136–48. doi: 10.4252/wjsc.v5.i4.136.

23. Minkin C, Marinho VC. Role of the osteoclast at the bone-implant interface.
Adv Dent Res. 1999;13:49–56.
24. Thalji G, Cooper L. Molecular assessment of osseointegration in vitro: a
review of the current literature. Oral & Craniofacial Tissue Engineering.
2012;2(3):221–49.

25. Thalji G, Cooper LF. Molecular assessment of osseointegration in vivo: a review
of the current literature. Int J Oral Maxillofac Implants. 2013;28(6):e521–34.

26. Cooper LF. Biologic determinants of bone formation for osseointegration:
clues for future clinical improvements. J Prosthet Dent. 1998;80(4):439–49.

27. Omar OM, Lennerås ME, Suska F, Emanuelsson L, Hall JM, Palmquist A, et al.
The correlation between gene expression of proinflammatory markers and
bone formation during osseointegration with titanium implants. Biomaterials.
2011;32(2):374–86. doi:10.1016/j.biomaterials.2010.09.011.

28. Nishimura I. Genetic networks in osseointegration. J Dent Res.
2013;92(12 Suppl):109S–18. doi:10.1177/0022034513504928.

29. Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of
Interventions Version 5.1.0 [updated March 2011]. The Cochrane
Collaboration, 2011. Available from www.cochrane-handbook.org; 2011.

30. Tarca AL, Romero R, Draghici S. Analysis of microarray experiments of
gene expression profiling. Am J Obstet Gynecol. 2006;195(2):373–88.
doi:10.1016/j.ajog.2006.07.001.

31. Slonim DK, Yanai I. Getting started in gene expression microarray
analysis. PLoS Comput Biol. 2009;5(10):e1000543. doi:10.1371/journal.
pcbi.1000543.

32. Nibali L. Suggested guidelines for systematic reviews of periodontal genetic
association studies. J Clin Periodontol. 2013;40(8):753–6. doi:10.1111/jcpe.12128.

33. Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, et al.
Strengthening the reporting of genetic association studies (STREGA):
an extension of the STROBE statement. PLoS Med. 2009;6(2):e22.
doi:10.1371/journal.pmed.1000022.

34. Ivanovski S, Hamlet S, Salvi GE, Huynh-Ba G, Bosshardt DD, Lang NP, et al.
Transcriptional profiling of osseointegration in humans. Clin Oral Implants
Res. 2011;22(4):373–81. doi:10.1111/j.1600-0501.2010.02112.x.

35. Donos N, Hamlet S, Lang NP, Salvi GE, Huynh-Ba G, Bosshardt DD, et al.
Gene expression profile of osseointegration of a hydrophilic compared with
a hydrophobic microrough implant surface. Clin Oral Implants Res.
2011;22(4):365–72. doi:10.1111/j.1600-0501.2010.02113.x.

36. Bryington M, Mendonça G, Nares S, Cooper LF. Osteoblastic and cytokine
gene expression of implant-adherent cells in humans. Clin Oral Implants
Res. 2012; doi:10.1111/clr.12054.

37. Thalji GN, Nares S, Cooper LF. Early molecular assessment of osseointegration
in humans. Clin Oral Implants Res. 2013; doi:10.1111/clr.12266.

38. Morey JS, Ryan JC, Van Dolah FM. Microarray validation: factors influencing
correlation between oligonucleotide microarrays and real-time PCR. Biol
Proced Online. 2006;8:175–93. doi:10.1251/bpo126.

39. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false
discovery rate in behavior genetics research. Behav Brain Res.
2001;125(1–2):279–84.

40. Alfarsi MA, Hamlet SM, Ivanovski S. Titanium surface hydrophilicity
modulates the human macrophage inflammatory cytokine response.
J Biomed Mater Res A. 2013; doi:10.1002/jbm.a.34666.

41. Pajarinen J, Kouri VP, Jämsen E, Li TF, Mandelin J, Konttinen YT. The response of
macrophages to titanium particles is determined by macrophage polarization.
Acta Biomater. 2013;9(11):9229–40. doi:10.1016/j.actbio.2013.06.027.

42. Chehroudi B, Ghrebi S, Murakami H, Waterfield JD, Owen G, Brunette DM.
Bone formation on rough, but not polished, subcutaneously implanted Ti
surfaces is preceded by macrophage accumulation. J Biomed Mater Res A.
2010;93(2):724–37. doi:10.1002/jbm.a.32587.

43. Heng BC, Cao T, Stanton LW, Robson P, Olsen B. Strategies for directing the
differentiation of stem cells into the osteogenic lineage in vitro. J Bone
Miner Res. 2004;19(9):1379–94. doi:10.1359/JBMR.040714.

44. Dhore CR, Snel SJ, Jacques SV, Naert IE, Walboomers XF, Jansen JA. In vitro
osteogenic potential of bone debris resulting from placement of
titanium screw-type implants. Clin Oral Implants Res. 2008;19(6):606–11.
doi:10.1111/j.1600-0501.2007.01519.x.

45. Kim DH, Yoo KH, Choi KS, Choi J, Choi SY, Yang SE, et al. Gene expression
profile of cytokine and growth factor during differentiation of bone
marrow-derived mesenchymal stem cell. Cytokine. 2005;31(2):119–26.
doi:10.1016/j.cyto.2005.04.004.

46. Omar O, Svensson S, Zoric N, Lenneras M, Suska F, Wigren S, et al. In vivo
gene expression in response to anodically oxidized versus machined
titanium implants. J Biomed Mater Res A. 2010;92(4):1552–66.
doi:10.1002/jbm.a.32475.

http://www.cochrane-handbook.org


Shanbhag et al. International Journal of Implant Dentistry  (2015) 1:5 Page 12 of 12
47. Marcellini S, Henriquez JP, Bertin A. Control of osteogenesis by the
canonical Wnt and BMP pathways in vivo: cooperation and antagonism
between the canonical Wnt and BMP pathways as cells differentiate from
osteochondroprogenitors to osteoblasts and osteocytes. Bioessays.
2012;34(11):953–62. doi:10.1002/bies.201200061.

48. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The
novel zinc finger-containing transcription factor osterix is required for
osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29.

49. Komori T. Regulation of osteoblast differentiation by Runx2. Adv Exp Med
Biol. 2010;658:43–9. doi:10.1007/978-1-4419-1050-9_5.

50. Guo J, Padilla RJ, Ambrose W, De Kok IJ, Cooper LF. The effect of
hydrofluoric acid treatment of TiO2 grit blasted titanium implants on
adherent osteoblast gene expression in vitro and in vivo. Biomaterials.
2007;28(36):5418–25. doi:10.1016/j.biomaterials.2007.08.032.

51. Mendonça G, Mendonça DB, Simões LG, Araújo AL, Leite ER, Duarte WR, et al.
Nanostructured alumina-coated implant surface: effect on osteoblast-related
gene expression and bone-to-implant contact in vivo. Int J Oral Maxillofac
Implants. 2009;24(2):205–15.

52. Rocci M, Rocci A, Martignoni M, Albrektsson T, Barlattani A, Gargari M.
Comparing the TiOblast and Osseospeed surfaces. Histomorphometric and
histological analysis in humans. Oral Implantol (Rome). 2008;1(1):34–42.

53. Qin C, Baba O, Butler WT. Post-translational modifications of sibling proteins
and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med.
2004;15(3):126–36.

54. Vlacic-Zischke J, Hamlet SM, Friis T, Tonetti MS, Ivanovski S. The influence of
surface microroughness and hydrophilicity of titanium on the up-regulation
of TGFβ/BMP signalling in osteoblasts. Biomaterials. 2011;32(3):665–71.
doi:10.1016/j.biomaterials.2010.09.025.

55. Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone
strength. Osteoporos Int. 2006;17(3):319–36. doi:10.1007/s00198-005-2035-9.

56. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality:
a possible explanation for bone fragility in aging, osteoporosis, and diabetes
mellitus. Osteoporos Int. 2010;21(2):195–214. doi:10.1007/s00198-009-1066-z.

57. Pornprasertsuk S, Duarte WR, Mochida Y, Yamauchi M. Lysyl hydroxylase-2b
directs collagen cross-linking pathways in MC3T3-E1 cells. J Bone Miner Res.
2004;19(8):1349–55. doi:10.1359/JBMR.040323.

58. Kaku M, Mochida Y, Atsawasuwan P, Parisuthiman D, Yamauchi M. Post-
translational modifications of collagen upon BMP-induced osteoblast
differentiation. Biochem Biophys Res Commun. 2007;359(3):463–8.
doi:10.1016/j.bbrc.2007.05.109.

59. Boyce BF. Advances in the regulation of osteoclasts and osteoclast
functions. J Dent Res. 2013;92(10):860–7. doi:10.1177/0022034513500306.

60. Mamalis AA, Markopoulou C, Vrotsos I, Koutsilirieris M. Chemical
modification of an implant surface increases osteogenesis and
simultaneously reduces osteoclastogenesis: an in vitro study. Clin Oral
Implants Res. 2011;22(6):619–26. doi:10.1111/j.1600-0501.2010.02027.x.

61. Heppenstall RB, Grislis G, Hunt TK. Tissue gas tensions and oxygen consumption
in healing bone defects. Clin Orthop Relat Res. 1975;106:357–65.

62. Potier E, Ferreira E, Andriamanalijaona R, Pujol JP, Oudina K, Logeart-Avramoglou D,
et al. Hypoxia affects mesenchymal stromal cell osteogenic differentiation
and angiogenic factor expression. Bone. 2007;40(4):1078–87.
doi:10.1016/j.bone.2006.11.024.

63. Mamalis AA, Cochran DL. The role of hypoxia in the regulation of osteogenesis
and angiogenesis coupling in intraoral regenerative procedures: a review of
the literature. Int J Periodontics Restorative Dent. 2013. doi:10.11607/prd.0868.

64. Nucera S, Biziato D, De Palma M. The interplay between macrophages and
angiogenesis in development, tissue injury and regeneration. Int J Dev Biol.
2011;55(4–5):495–503. doi:10.1387/ijdb.103227sn.

65. Ziebart T, Schnell A, Walter C, Kämmerer PW, Pabst A, Lehmann KM, et al.
Interactions between endothelial progenitor cells (EPC) and titanium
implant surfaces. Clin Oral Investig. 2013;17(1):301–9.
doi:10.1007/s00784-012-0691-7.

66. Clarkin CE, Gerstenfeld LC. VEGF and bone cell signalling: an essential vessel
for communication? Cell Biochem Funct. 2013;31(1):1–11. doi:10.1002/cbf.2911.

67. Zhang F, Qiu T, Wu X, Wan C, Shi W, Wang Y, et al. Sustained BMP signaling
in osteoblasts stimulates bone formation by promoting angiogenesis
and osteoblast differentiation. J Bone Miner Res. 2009;24(7):1224–33.
doi:10.1359/jbmr.090204.

68. Shiojima I, Walsh K. Role of Akt signaling in vascular homeostasis and
angiogenesis. Circ Res. 2002;90(12):1243–50.
69. Raines AL, Olivares-Navarrete R, Wieland M, Cochran DL, Schwartz Z, Boyan BD.
Regulation of angiogenesis during osseointegration by titanium surface
microstructure and energy. Biomaterials. 2010;31(18):4909–17.
doi:10.1016/j.biomaterials.2010.02.071.

70. Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M, et al.
Effects of surface hydrophilicity and microtopography on early stages of
soft and hard tissue integration at non-submerged titanium implants: an
immunohistochemical study in dogs. J Periodontol. 2007;78(11):2171–84.
doi:10.1902/jop.2007.070157.

71. Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Histological
and immunohistochemical analysis of initial and early osseous integration at
chemically modified and conventional SLA titanium implants: preliminary
results of a pilot study in dogs. Clin Oral Implants Res. 2007;18(4):481–8.
doi:10.1111/j.1600-0501.2007.01341.x.

72. Lambrichts I. Histological and ultrastructural aspects of bone innervation. In:
Jacobs R, editor. Osseoperception. Leuven, Belgium: UZ Leuven; 1998. p. 13–20.

73. Bais M, McLean J, Sebastiani P, Young M, Wigner N, Smith T, et al.
Transcriptional analysis of fracture healing and the induction of
embryonic stem cell-related genes. PLoS One. 2009;4(5):e5393.
doi:10.1371/journal.pone.0005393.

74. Ivanovski S, Hamlet S, Retzepi M, Wall I, Donos N. Transcriptional profiling of
“guided bone regeneration” in a critical-size calvarial defect. Clin Oral Implants
Res. 2011;22(4):382–9. doi:10.1111/j.1600-0501.2010.02104.x.

75. Donos N, Retzepi M, Wall I, Hamlet S, Ivanovski S. In vivo gene expression
profile of guided bone regeneration associated with a microrough
titanium surface. Clin Oral Implants Res. 2011;22(4):390–8.
doi:10.1111/j.1600-0501.2010.02105.x.

76. Skaper SD. The neurotrophin family of neurotrophic factors: an overview.
Methods Mol Biol. 2012;846:1–12. doi:10.1007/978-1-61779-536-7_1.

77. Vaillant AR, Mazzoni I, Tudan C, Boudreau M, Kaplan DR, Miller FD.
Depolarization and neurotrophins converge on the phosphatidylinositol
3-kinase-Akt pathway to synergistically regulate neuronal survival. J Cell Biol.
1999;146(5):955–66.

78. Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N. Human bone
marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic
factor which promotes neuronal survival in vitro. Stem Cell Res.
2009;3(1):63–70. doi:10.1016/j.scr.2009.02.006.

79. Buma P, Elmans L, Oestreicher AB. Changes in innervation of long bones
after insertion of an implant: immunocytochemical study in goats with
antibodies to calcitonin gene-related peptide and B-50/GAP-43. J Orthop
Res. 1995;13(4):570–7. doi:10.1002/jor.1100130412.

80. Corpas Dos Santos L, Lambrichts I, Quirynen M, Collaert B, Politis C, Vrielinck L,
et al. Peri-implant bone innervation: histological findings in humans. Eur J Oral
Implantol. 2014;7(3):283–92.

81. Huang Y, Jacobs R, Van Dessel J, Bornstein MM, Lambrichts I, Politis C. A
systematic review on the innervation of peri-implant tissues with special
emphasis on the influence of implant placement and loading protocols.
Clin Oral Implants Res. 2014; doi:10.1111/clr.12344.

82. Abarca M, Van Steenberghe D, Malevez C, Jacobs R. The neurophysiology of
osseointegrated oral implants. A clinically underestimated aspect. J Oral
Rehabil. 2006;33(3):161–9. doi:10.1111/j.1365-2842.2005.01556.x.

83. Klineberg I, Calford MB, Dreher B, Henry P, Macefield V, Miles T, et al. A
consensus statement on osseoperception. Clin Exp Pharmacol Physiol.
2005;32(1–2):145–6. doi:10.1111/j.1440-1681.2005.04144.x.

84. Enkling N, Utz KH, Bayer S, Stern RM. Osseoperception: active tactile
sensibility of osseointegrated dental implants. Int J Oral Maxillofac Implants.
2010;25(6):1159–67.

85. Canuto RA, Pol R, Martinasso G, Muzio G, Gallesio G, Mozzati M.
Hydroxyapatite paste Ostim, without elevation of full-thickness flaps,
improves alveolar healing stimulating BMP- and VEGF-mediated signal
pathways: an experimental study in humans. Clin Oral Implants Res.
2013;24 Suppl A100:42–8. doi:10.1111/j.1600-0501.2011.02363.x.


	Abstract
	Objective
	Methods
	Results
	Conclusion

	Review
	Introduction

	Methods
	Study design
	Inclusion and exclusion criteria
	Search strategy
	Study selection
	Data extraction
	Assessment of methodology and risk of bias

	Results and discussion
	Search results and study characteristics
	Assessment of methodology and risk of bias
	Biological processes identified through gene expression in peri-implant tissues
	Inflammation
	Osteogenic differentiation
	ECM production
	Osteoclastic activity and remodeling
	Angiogenesis
	Neurogenesis

	Conclusions
	Competing interests
	Authors’ contributions
	Author details
	References

