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Abstract

Background: One-piece narrow diameter implants (NDIs) have been recommended as “Single-tooth replacements
in the anterior zones, single posterior, multiple-unit fixed dental prosthesis (FDP), edentulous jaws to be
rehabilitated with FDP, and edentulous jaws rehabilitation with overdentures in situations with reduced mesiodistal
space or reduced ridge width.” (ITI consensus 2013). Since NDIs can be immediately loaded, it is important to be
able to carry out stability testing. We developed and validated a customized SmartPeg for this type of implant to
measure the Implant Stability Quotient (ISQ). The ISQ of mini dental implants (MDIs) was measured and compared
with the stability of standard and in a rabbit model.

Objective: The aim of the study is to test the feasibility of a customized SmartPeg for resonance frequency
measurement of single-piece mini dental implants and to compare primary stability of a standard and the mini
dental implant (3M™ESPE™ MDI) in a rabbit model after 6 weeks of healing.

Methods: Eight New Zealand white rabbits were used for the study. The protocol was approved by the McGill
University Animal Ethics Review Board. Sixteen 3M™ESPE™ MDI and equal number of standard implants (Ankylos®
Friadent, Dentsply) were inserted into the tibia/femur of the rabbits and compared. Each rabbit randomly received
two 3M™ESPE™ MDI and two Ankylos® implants in each leg. ISQ values were measured with the help of an Osstell
ISQ device using custom-made SmartPegs for the MDIs and implant-specific SmartPegs™ (Osstell) for the Ankylos®.
Measurements were obtained both immediately following implant placement surgery and after a 6-week healing
period. Each reading was taken thrice and their average compared using Wilcoxon matched pairs signed-rank tests.

Results: The median ISQ and interquartile range (IQR) values were 53.3 (8.3) at insertion and 60.5 (5.5) at 6 weeks
for the 3M™ESPE™MDI and, respectively, 58.5 (4.75) and 65.5 (9.3) for the Ankylos® implant. These values also
indicate that both types of implants achieved primary and secondary stability, and this is supported by histological
data. ISQ values of both 3M™ESPE™ MDI and Ankylos® increased significantly from the time of insertion to 6 weeks
post-insertion (p < 0.05).

Conclusions: The new custom-made SmartPeg is suitable for measuring the Implant Stability Quotient of
3M™ESPE™MDIs. The primary stability of 3M™ESPE™MDIs is similar to the primary stability attained by standard
implants in the rabbit tibia.
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Background
Osseointegration refers to the phenomenon for close ap-
position of the bone to the surface of an implant with
no interposing tissue that can be clinically demonstrated
by absence of mobility [1, 2]. Obtaining primary stability
seems to be a precondition for a successful osseointegra-
tion [3]. Dental implants have a success rate of over 90%
and are available in various sizes with different surfaces
[4, 5]. The diameter of dental implants usually ranges
from 3 mm (narrow diameter) to 7 mm (wide diameter),
with the majority falling in the “standard diameter”
range of 3.7 to 4.0 mm.
Single-piece mini dental implants (MDIs) or narrow

diameter implants (NDIs) are being widely used for sta-
bilizing complete dentures [6], orthodontic anchorage
[7, 8], single-tooth replacements, and fixing surgical
guides for definitive implant placement, and as transi-
tional implants for support of interim removable pros-
thesis during the healing phase of final fixtures [9–11].
Due to the MDIs’ narrower diameter (1.8–2.4 mm) as

compared with regular implants, the width of the bone re-
quired for their placement is smaller, making the surgery
minimally invasive as compared with the surgery for con-
ventional implant insertion [12]. In addition, transmucosal
placement is performed using a single pilot drill, reducing
the need for sutures and long recovery periods [13]. Mini
dental implants can also be immediately loaded and are
cost-effective, which makes them an advantageous alterna-
tive for mandibular implant overdentures [13, 14]. The
success of these implants will depend, however, on their
capacity to outstand functional loadings.
Osseointegrated implants are clinically characterized

by the absence of mobility, which can be assessed by
measuring the primary and secondary implant stability
[15, 16]. Some authors have suggested that primary sta-
bility is a critical factor in predicting whether an implant
will be successful or not, and it is considered of highest
importance in the long-term success of dental implants
[17, 18]. It has also been reported that micro movements
can be detected at an early stage by measuring the
primary implant stability and that they are unfavorable
to the osseointegration of dental implants [19–21].
Mechanical testing methods like reverse torque, or

“pullout test,” have been used to study and measure the
mechanical interface between implant and bone in various
ways [22, 23]. The Branemark group has evaluated the
mechanical properties of osseointegrated implants using
torsion and pullout tests and lateral loading tests [24, 25].
Presence or absence of mobility and the bone level around
the implant can be estimated by non-invasive methods
based on resonance frequency analysis (RFA) such as
those used by Periotest and Osstell™ devices [26–30].
Resonance frequency analysis has been used to docu-

ment changes in the bone healing along the implant-

bone interface by measuring the stiffness of implant in
the bone tissue [31–34]. It has also been used to deter-
mine whether implants are ready for the final restoration
[35] or ready to be loaded [33] and to identify the im-
plants at “risk” [36]. The first studies using RFA were
published in 1996 [37]. In 1997, Meredith et al. sug-
gested a non-invasive method for determining the reson-
ance frequency associated with dental implants by
connecting an adapter/transducer onto the abutment in
an animal study [38]. The experimented RFA system,
base on magnetic pulses, has been commercially pro-
duced as Osstell since the year 2000 [19] (Osstell AB,
Göteborg, Sweden). Osstell was later followed by Osstell
Mentor™ and Osstell ISQ™. It calculates the Implant Sta-
bility Quotient (ISQ) converting kilohertz units to ISQ
on a scale of 1–100, where 100 signifies the highest im-
plant stability. Increases in ISQ measurements indicate
improved bone stiffness and healing around the implant
and better implant stability. The Osstell ISQ works by
introducing a controlled vibration to the implant by
means of a sensor and a rod (SmartPeg) connected to
the implant and measuring its frequency. These Smart-
Pegs are usually fabricated for standard diameter im-
plants. The osseointegration potential of single-piece
mini dental implants (3M™ESPE™ MDIs) has never been
assessed by RFA. The immediate post-surgical ISQ as-
sessment of MDIs is particularly relevant due to their
smaller size and surface area in comparison to standard
implants.
There are no published studies on the ISQ measure-

ment of mini dental implants, as SmartPegs for these
implants are not available till date. Since these are one-
piece implants and do not have an internal thread for
the SmartPeg’s attachment, a custom-made SmartPeg
needs to be fabricated for ISQ measurement. Therefore,
we developed and tested a customized SmartPeg for
3M™ESPE™ MDIs to measure the ISQ.

Objective
The aim of the study is to test the feasibility of a custom-
ized SmartPeg for ISQ measurement of single-piece mini
dental implants and to compare the primary stability of a
standard and the mini dental implant (3M™ESPE™MDI) in
a rabbit model after 6 weeks of healing.

Methods
Development of a customized SmartPeg
Single use Osstell SmartPegs for standard implants are
made from a soft metal with a zinc-coated magnet
mounted on top of it and attached to the implants or
abutments’ internal threads. As the company does not
provide SmartPegs for one-piece implants, we developed
a customized SmartPeg for mini dental implants
(3M™ESPE™ MDIs), which do not have internal threads
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(Fig. 1). After confirming that the standard SmartPegs™
are fabricated in aluminum, we customized a prototype
in the same metal with a square-shaped assembly, which
could be tightened with a small screw over the spherical
top end of the MDIs. Our SmartPeg prototype was
tested for reproducibility verifying the ISQ values on an
MDI inserted into a wooden plank made of balsa wood.
RFA measurements were taken 50 times, and a standard
error of mean of all measurements was calculated.

Animal model and sample size
Eight clinically healthy New Zealand white rabbits
weighing >3.5 kg used for the study were housed in the
Central Animal House facility. The head of the tibia/
femur of the animals were chosen for the implantation
of samples because they have been widely used as an
animal model, and so, our results could be promptly
compared [39–46]. The sample size of this study has
been calculated based on the results of a similar study
[36]. It was expected that 88% statistical power would be
achieved by using sixteen 3M™ESPE™MDIs (experimen-
tal) and equal number of regular implants Ankylos®,
Dentsply Friadent GmbH (control). Each animal re-
ceived two implants on each of the hind limbs, i.e., the
right and left tibia/femur heads, randomly. Therefore,
each animal had a total of four implants, i.e., two experi-
mental and two regular implants, randomly located.

Surgical procedures
The procedures were approved by the institutional ani-
mals’ ethics review board of McGill University, Montreal,
Canada. Adequate measures were taken into consideration

to minimize pain and distress in the animal during the
procedure. Animals were anesthetized by intravenous in-
jections of a ketamine hydrochloride-xylazine mixture at
35–50 and 1–3 mg/kg, respectively, according to the
method described by Green et al. [47]. Acepromazine was
injected subcutaneously at the dosage of 1 mg/kg. Further
injections of the mixture were given to maintain
anesthesia, if necessary. All surgical procedures were per-
formed in accordance with McGill’s standardized operat-
ing protocol (SOP).
For the MDIs, a small longitudinal skin incision was

made just distal to the tibia/femur joint. The tibia/femur
head was exposed subperiosteally, and an osteotomy was
performed with the pilot drill under copious irrigation
with saline solution, transposing the cortical bone to the
depth of 0.5 mm. The implants were aseptically trans-
ferred to the bone site and manually rotated clockwise
while exerting downwards pressure to start the self-
tapping process. When bony resistance was encountered,
the winged thumb wrench was used for driving the im-
plant deeper into the bone, if necessary.
Ankylos® implants were inserted in the other tibia/

femur head of the animals according to the manufac-
turer’s protocol as follows: After mobilizing the subper-
iosteal flap and using a 3-mm center punch to register a
guiding point for the osteotomy, a twist drill, depth drill
series and a conical reamer were used sequentially to
complete the osteotomy and to develop a conical shape
for accomodation of the implant’s body. A counterclock-
wise rotation was used to compress the bone in case of
soft bone. The tap or thread cutter was used to create
the threads in dense bones. Following, the implant
assembly was aseptically transferred to the osteotomy
site, and the implant placement was started manually
and finalized using a hand ratchet. If excessive force was
experienced, the osteotomy was irrigated, and the depth
was checked by retapping.

Resonance frequency assessment
Resonance frequency assessment was performed thrice,
just after the insertion of the implants, using the Osstell
ISQ™ device. In brief, customized SmartPegs were stabi-
lized onto the head of the 3M™ESPE™ MDIs and Osstell
company’s specific SmartPeg™ devices were screwed into
Ankylos® implants, taking care to ensure that no
significant torquing force was applied to the implants,
and the RFA was carried out. These procedures were re-
peated for post-euthanasia RFA.

Post-surgical treatment and euthanasia
The rabbits were given a dose of cephalexin 12 mg/kg
0.5 mL IV once intraoperatively and a postoperative an-
algesic, i.e., carprofen 2–4 mg/kg SC every 8 h for 3 days,
according to McGill’s SOP. The animals had a free

Fig. 1 Customized SmartPeg diagrams
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access to water and food, and routine daily care followed
as per McGill’s SOP#524.01. The sutures were removed
after 7–10 days, and the animals were euthanized at
6 weeks postoperatively. It has been shown by various
authors that this period is adequate to develop a “rigid
osseous interface” in rabbits [30]. An overdose of pento-
barbital sodium 1 mL/kg intravenously was used for this
purpose [48].

Statistical analyses
ISQ values were averaged and compared between im-
plant types and times using Wilcoxon’s matched pairs
signed-rank tests at a significance level of p < 0.05. Stat-
istical analysis was performed with the help of SPSS stat-
istical software version 17.

Results
The ISQ values obtained while calibrating the custom-
ized SmartPeg were similar to in vivo results. Median
ISQ values at insertion and at 6 postoperative weeks
were 53.3 (IQR 8.3) and 60.5 (5.5) for the 3M™ESPE™M-
DIs, and 58.5 (4.75) and 65.5 (9.3) for the Ankylos® im-
plants, respectively, with no statistical difference (Figs. 2
and 3). The ISQ values of both 3M™ESPE™ MDI and
Ankylos® (Figs. 2 and 3) increased significantly from the
time of insertion to 6-week post-insertion (p < 0.05).

Discussion
It is important to measure the Implant Stability Quotient
(ISQ) of single-piece mini dental implants as they are
becoming increasingly popular, with the concomitant in-
crease in publications demonstrating their high survival
and success rates. Although the clinical use of Osstell
devices is also increasing, there is lack of studies on its
use with single-piece implants, which do not have

internal threads. Implant Stability Quotient (ISQ) is an
objective and standardized method for measuring im-
plant stability clinically ranging from 55 to 80, with
higher values usually observed in the mandible [49]. The
ISQ scale has a non-linear correlation to micro mobility.
With more than 700 scientific references, we now know
that high stability means >70 ISQ, between 60 and 69 is
medium stability, and <60 ISQ is considered as low
stability.
The rabbit tibias have been used to determine longitu-

dinal changes in the resonance frequency and measured
for over 168 days from the time of implant insertion,
and it was observed that resonance frequency values in-
creased over time [38].
However, the relationship between the bone density

and ISQ is not significant [50]. Therefore, higher ISQ
values are a sign of bone anchorage of implants, but the
relationship of resonance frequency analysis with bone
structure is unclear [51–53]. ISQ values decline in the
first 2 weeks after implant insertion, and these changes
may be associated with early bone healing and marginal
alveolar bone resorption. Bone remodeling reduces pri-
mary bone contact. In the early stage after implant
placement, the formation of bony callus and increasing
lamellar bone in the cortical bone causes major changes
in bone density. Therefore, in the healing process, pri-
mary bone contact decreases and secondary bone con-
tact increases [53, 32]. Degidi et al. [54] reported that
there may also be a discrepancy as the histological ana-
lyses is a two-dimensional picture of the three-
dimensional bone-implant contact.
If the initial ISQ value is high, a small drop in stability

normally levels out with time. A big drop in stability or
decrease should be taken as a warning sign. Lower
values are expected to be higher after the healing period.

Fig. 2 ISQ values of MDIs and Ankylos® immediately upon insertion
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The opposite could be a sign of an unsuccessful implant,
and actions should be taken accordingly.
Studies have shown that the resonance frequency value

is greatly associated with the quantity of bone-implant
contact [31, 38]. There is a positive correlation between
resonance frequency analysis and histomorphometric
measurements [37]. In our histological study previously
reported, similar findings were demonstrated [55].
Our results indicate that both types of implants

achieved primary and secondary stability.
Several measurements may be more dependable than

single measures; therefore, it may be important to meas-
ure resonance frequency multiple times and average the
values in order to obtain the most reliable assessment.
While reliability of resonance frequency analysis has not
been established in the past for these mini dental implants
used for overdentures, studies have shown similar or
lower levels of reliability for regular dental implants [56].
In general, there was an increase in the ISQ values in

both groups, which may be related to enhancement of
rigidity between the implants and neighboring tissues
and largely with the changes at the bone-implant inter-
face. It has been demonstrated that there is a develop-
ment of woven bone surrounding the implants 1 week
following placement in the rabbit tibia. This scantily
organized bone is resorbed by osteoclasts and slowly re-
modeled into the lamellar bone and gets more com-
pacted around the implant surface and remodeled to
become a mature bone over a period of 42 days [38, 57].
There seems to be minimal changes in the resonance
frequency after this period. Our results are in concur-
rence with the study by Meredith et al. [38].
As there are no studies that provide data based on res-

onance frequency measurements for single-piece MDIs,

the exact RFA threshold values for MDIs may have to be
identified with more studies conducted in vivo.
The resonance frequency assessment with a custom-

ized SmartPeg would be a useful tool to provide clinic-
ally useful information about the condition of the bone-
implant interface of 3M™ ESPE™MDIs. Frequently, im-
plant failures are associated with biomechanical reasons;
implant stability assessment can reduce this to a great
extent. The higher the RFA value, the higher the success
in implant treatment and the lower the risk for failure in
the future. On the other hand, lower RFA values may in-
dicate greater risk for implant complications. The MDIs
are usually immediately loaded. Resonance frequency
measurement technique is also of value in evaluating the
immediate loading implants [58]. The results of the
present study are encouraging and show that it is pos-
sible to measure ISQ for these single-piece MDIs. This
study is the first of its kind and similar type of studies
should be conducted among humans, to make the re-
sults more meaningful and generalizable.

Conclusions
The results of this animal study indicate that ISQ meas-
urement of these single-piece MDIs is possible with the
help of a custom-made SmartPeg and that 3M™ESPE™M-
DIs attain primary and secondary stability at the same
levels as standard implants in the rabbit tibia.
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