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Abstract

at the interface between the implant and the abutment.

electron microscope (SEM).

Background: Fractured connections between implants and implant abutments or abutment screws are frequently
encountered in a clinical setting. The purpose of this study was to investigate fracture strength using a torsion test

Methods: Thirty screw-type implant with diameters of 3.3, 3.8, 4.3, 5.0, and 6.0 mm were submitted to a torsion test.
Implants of each size were connected to abutments with abutment screws tightened to 20 N - cm. Mechanical stress
was applied with a rotational speed of 3.6 °/min until fracture occurred, and maximum torque (fracture torque) and
torsional yield strength were measured. The mean values were calculated and then compared using Tukey's test.
The abutments were then removed, and the implant-abutment interfaces were examined using a scanning

Result: No significant differences in mean fracture torque were found among 3.3, 3.8, and 4.3 mm-diameter
implants, but significant differences were found between these sizes and 5.0 and 6.0 mm-diameter implants
(p < 0.01). Concerning mean torsional yield strength, significant differences were found between 3.3, 3.8, and

4.3 mm-diameter and 5.0 and 6.0 mm-diameter implants (p < 0.01). Observations under the SEM showed that all

the projections of the abutment corresponding to the internal notches of the implant body had been destroyed.

Conclusions: Smaller diameter implants demonstrated lower fracture torque and torsional yield strength than
implants with larger diameters. In internal tube-in-tube connections, three abutment projections corresponding to
rotation-prevention notches were destroyed in each implant.
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Background

A single-tooth osseointegrated implant is composed of
an implant body, an abutment, an abutment screw, and
an artificial crown. The implant and abutment are typic-
ally connected by an abutment screw. The degree of
mechanical integrity at the implant-abutment interface
depends on screw preload, abutment connection design,
the fitness of all components, and dynamic loading con-
ditions. Fractures of the internal or external connection
between implants and implant abutments or abutment
screws are encountered in the clinical setting [1-3].
Fractures may occur as a result of excessive axial forces
(bending moments), horizontal loading, or rotational
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torque during functional activities such as chewing or
parafunctional activities such as grinding and clenching.
Several studies [4, 5] have evaluated implant-abutment
assemblies in dynamic cyclic fatigue testing according to
ISO 14801 [6]. However, evaluation of the strength of
the implant-abutment assembly has not been reported
when subjected to torsion testing. Test methods and
standard vales have not yet been established for such tor-
sion testing of implant-abutment assemblies. Abutment
connections are principally classified as either internal or
external types and are available in a variety of designs,
including hexagonal, octagonal, cone screw, cone hex,
cylinder hex, spline, cam, cam tube, and pin/slot. Implants
incorporate features for rotation-prevention at the
implant-abutment interface. The advantages and disadvan-
tages of various types of implant-abutment connections
have been discussed in several studies [7—11]. Norton
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reported that internal implant-abutment interface connec-
tions have higher bending moment resistance than external
connections [10]. Presently, although more than 200 kinds
of implant systems are available on the market, most
manufacturers do not provide specific data regarding
system-specific implant-abutment connection design com-
plications [12, 13]. In the oral cavity, implant restorations
are exposed to vertical, horizontal, and rotational forces
during chewing. The maximum torsional strength and pro-
portional limited strength on crown and tooth restoration
materials were measured, and the values were compared
with a mechanical bending and pull test value [14].

The purpose of this in vitro study was to investigate
fracture strength using a torsion test at the implant-
abutment interface in order to assess the effect of
torsion force on the connection.

Methods

Thirty titanium screw implants of five different diame-
ters (3.3, 3.8, 4.3, 5.0, and 6.0 mm) with tube-in-tube
implant-abutment connections (CAMLOG Biotechnolo-
gies, Wimsheim, Germany) were used as test specimens.
Implants of each size were connected to abutments, and
abutment screws were tightened to 20 N-cm using a
digital torque meter (Hios HDM-5; Hios Inc, Chiba,
Japan). A torsion testing device (AG-XR; Shimadzu,
Kyoto, Japan) was used on all implant test specimens in
this study (Fig. 1).

The specimens were mounted on the torsion testing
device, and mechanical stress was applied with a rota-
tional speed of 3.6 °/min until permanent deformation
or fracture occurred. The maximum torque (fracture
torque) and torsional yield strength were measured in
each specimen. The mean values of measured data were
calculated and compared using Tukey’s test at 0.05 level
of significance.

The specimens were then removed from the device
and the abutments unscrewed, and the parts of the
interface between the rotation-prevention structure of

Fig. 1 Torsion testing device
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Fig. 2 Torsional yield strength and maximum fracture torque strength
of CAMLOG implant in each diameter

the implants and abutments were examined using a
scanning electron microscope (SEM).

Results

The relationship between torsional load and fracture oc-
currence followed a parabolic curve, and the maximum
fracture torque and torsional yield strength of all sizes of
implants were recorded (Fig. 2). The straight line of a
primary curve in the initial phase represents the propor-
tional limit. The transition point between the propor-
tional straight line and the beginning of the curve is
defined as the yield point and always occurs after plastic
deformation. The mean values of these measured data
are shown in Figs. 3 and 4. No significant differences in
mean maximum fracture torque were found among 3.3,
3.8, and 4.3 mm-diameter implants, but significant
differences were found between these sizes and 5.0 and
6.0 mm-diameter implants (p < 0.01). The mean torsional
yield strengths demonstrated significant differences
between 3.3, 3.8, and 4.3 mm-diameter and 5.0- and
6.0-mm-diameter implants (p <0.01). The torsional frac-
ture strength of the smaller diameter (3.3 and 3.8 mm) im-
plants was markedly lower than that of the wider diameter
implants. Observations under the SEM showed that all
implan

t-abutment connections had been damaged. Specifically,
the internal notches of the implant body remained intact,
but all projections of abutment corresponding to internal
notches had been destroyed (Fig. 5).

Discussion

During the physiological function of chewing, or the
non-physiological function of bruxism, compressive,
bending, and torsional stresses are generated in teeth or
prosthetics. These stress will cause the abutment screw
loosening or fracture, fracture of the abutment, fracture
of the implant, and the implant/abutment connection.
The extent of the damage is influenced by the design of
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the prosthesis, the fit of the implant prosthesis, the im-
plant inclination, and the loading force. In these circum-
stances, tolerable enough clinical implant/abutment joint
strength is required and ISO 14801 is used as their
fatigue strength test method. However, torsional stresses
generated in the oral cavity should also be considered.
For these reasons, this study was undertaken in order to
compare the torsional strength required to deform the
implant-abutment connection for various diameter im-
plants. The mode of failure will be the future investiga-
tion to be resolved by observing the fractured surfaces.
In all specimens tested in this study, the relationship
between static torsional load and fracture occurrence
followed a parabolic curve. The primary curve was
determined to be the torsional torque under which plas-
tic deformation occurred and subsequently proceeded,
resulting in permanent deformation. The curves illus-
trated in Fig. 2 showed two patterns in all specimens.
Smaller diameter (3.3 and 3.8 mm) implants fractured
much easier and earlier at the implant-abutment
interface. This load-displacement curve is similar to
the result of statistic loading test that Huang HM et
al. [5] reported.

Examining all SEM images of the implant-abutment

corresponding internal grooves remained intact. When
torsion was applied, the grooves, which are composed of
grade 4 commercially pure titanium (CP-Ti), were com-
pressed; however, the abutment interlocks, which are
composed of a titanium alloy (Ti-6Al-4V), were com-
pletely sheared off. Although the tensile strength of the
Ti-6Al-4V alloy is at least 2 % greater than that of CP-
Ti, much more titanium is adjacent to the grooves,
which are compressed and can therefore withstand the
transmitted force. On the other hand, the interlocks
contain less material and therefore shear off if the ap-
plied force is too high. Nagel et al. studied the implant-
abutment connection of each of the Replace-Select and
the CAMLOG implants using FEM and reported that
each design was very similar [15]. When comparing each
system, they reported that the Replace-Select implant
may fail by fracture of the implant body at the thinnest
part of the wall. This thin portion represents the internal
design that prevents the implant-abutment from
rotating.

For comparison between the mechanical strength of
CP-Ti screw implants with internal tube-in-tube implant-
abutment connections and that of external hexagonal-type
connections, all abutments and CP-Ti implants with ex-

connections, we found that although their anti- ternal hexagonal-type connections were heavily damaged
rotational notches had been  destroyed, the or destroyed in all phases of loading. A typical fracture
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Fig. 5 SEM picture of CAMLOG implant after torsion test
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curve for CP-Ti implants with external connections is
shown. The proportional limit and a parabola-like curve
with eternal destruction were drawn. Torsion forces of
0.25, 0.50, 0.75, 1.00, 1.25, and 1.50 N - m were applied to
the external CP-Ti implants. Deformation occurred in
both the implant and the abutment at each torsion force
(Fig. 6). This might have been the result of the abutment
connection design or the physical properties of the

implant materials. In addition, the deformation effect on
the torsional yield strength of the implants and abutments
is worth noting, as deformation occurred immediately
before torsion fracture in all specimens.

Balfour and O’Brien tested the following three kinds
of implants for maximum anti-rotational stability: ex-
ternal hexagon-type 0.7 mm-diameter CP-Ti implants,
internal octagon-type 0.6 mm-diameter Ti-6Al-4V
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Fig. 6 SEM picture of implant with external hexagonal connection
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implants, and internal hexagon-type 1.7 mm-diameter Ti-
6Al-4V implants and abutments [16]. Testing comprised
rigidly fixing a calibrated torque gauge to the abutment
sleeve and applying torque until failure of the components
was apparent. The torques necessary to separate the
single-tooth abutments from the implants were 8.7
in.-1b (98.3 N - cm) for the external hexagon-type, 3.3 in.-1b
(37.3 N - cm) for the internal octagon-type, and 10.0 in.-Ib
(1921 N-cm) for the internal hexagon-type. In the
internal octagon and internal hexagon designs, failure was
limited to the abutment connections. The Balfour and
O’Brien result differed from those reported in this study
(4.3 and 3.8 mm diameters, 87 and 70 N-cm, respect-
ively). The results from this study confirmed that the
torsional strengths were different depending on the con-
nection dimensions as reported by Balfour and O’Brien.
CAMLOG implants (5 and 6 mm diameter) achieved
higher torsional strength than 4.3, 3.8, and 3.3 mm
diameter. This resulted from a combination of increased
implant diameter and thickness of the implant walls.

Conclusions

The forces that led to permanent deformation of the
abutment connections were dependent on the implant
diameter. The differences between the implants used in
this study were obvious, both macroscopically and
microscopically. Significantly less force was needed to
fracture smaller than larger diameter implants. Further-
more, in the CAMLOG implants only, abutment projec-
tions corresponding to anti-rotational notches were
destroyed, which could have been due to differences in
the strength and tensile properties of the materials.
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